
AFL Change History

Sam Wilmott
420 Tweedsmuir Ave, Ottawa, ON, Canada

sam@wilmott.ca

Abstract

These are the changes to the AFL implementation, its libraries and
its documentation since the first public release (afla001) on 25 Feb-
ruary 2005.

1 afla009 (4 September - 12 November 2005)

The following is a collection of changes that have built up over the
last couple of months.

• Added multi-thread references (a.k.a. “threadSafeRef”) to
afldefs.afl, and in the process made currentTextReader, cur-
rentTextWriter and currentSource all thread safe, without any
need to do extra includes, other than including “threading.afl”.

• Each of the compiler options /a /e, /i, /k and /s may now be
specified more than once on the command line. This is espe-
cially useful for /a and /i, where there may be more than one
source of configuration or “include” files. For /e, /k and /s, all
the specified options are combined as if specified together.

• Added the “..” operator to “patterns.afl” (for matching a char-
acter in a range of values, as in ~: “A” .. “Z”).

• Added the “random” function to “afldefs.afl”.

• Removed the “else” forms of the “for-do”, “while-do”, “until-
do”, “do-until” and “do-while” operators from “afldefs.afl”
and “afldefs2.afl”. I found that constructs like:

if a.count () > 0 then
(for each a do (aItem):

print aItem)
else

print "no items!";

more often than not intended that the “else” be part of the
outer “if” rather than the inner loop, requiring an extra set
of parentheses to disambiguate the association of the “else”.
Removing the loops’ “else” parts reduces potential ambiguity,
and means the parentheses aren’t needed.

• Made “afldefs2.afl” the default AFL2 definition file for the
AFL compiler. This provides an approximately 20% speed up
in AFL run times. “afldefs.afl” is still there, for those of you
who want to play with Church-like booleans.

• Removed “ccall” as a keyword, and added a definition for it
(using “ccallWithEH”) to “afldefs.afl” and “afldefs2.afl”.

Copyright © 2005, Sam Wilmott

• Added the /a option to the compiler’s command line, allow-
ing specification of files containing further command-line-like
options (one per line of the command file, and with /a not
recognized within configuration files).

• Added the /f option to the run-time’s command line. /f says to
not run any frame “atEnd” parts once and exception has been
encountered, and to treat all exceptions as program terminat-
ing. This is typically a bad idea, but is useful when trying to
pin-point the reason for an exception – not cluttering up the
situation with processing following the exception.

• Added the /s=z option on the AFL compiler’s command line.
/s=z causes the compiler to generate code that gives you
a function/continuation stack trace of where you are in the
current thread/coroutine when the program ends in an error.
Helps a lot in debugging.

• Removed the “.suspend” and “.resume” methods from the the
“thread” maker in “threading.afl”. These methods are depre-
cated by .NET 2.0. One should use a monitor instead.

• Added a note to the “xmlparser.afl”. This include produces
a warning under .NET 2.0 but still runs OK. The note tells
how to make the include .NET 2.0 compatible. (Updating it
to be .NET 2.0 compatible would have made it not run under
.NET 1.1 and lower or under Mono 1.9.x and lower.) “xml-
parser2.afl” is an include with this update applied.

Some error corrections:

• Corrected an error in the “<pattern> rep <number> upto
<number>” operator in “patterns.afl”: it always returned an
inappropriate function value rather than true/false.

• Corrected an error in the “pos <number>” operator when it
was passed a negative value: it always failed.

• Corrected an error in the compiler: any top-level closing
parend, bracket or brace would end the program without com-
plaint.

• Changed the way the “hasField” and “field” operators work:
it used to be that the second argument had to be a string whose
value is a C# name rather than an AFL name, which was in-
appropriate. The second argument’s value now has to be an
AFL name, i.e. “0field” rather than “_00field”.

And changes to (www.wilmott.ca/afl/afloverview.html)
afloverview.html:

• The section titled “Variables Revisited” has been added, de-
scribing the creation and use of variables in more detail.

1

• The section titled “Multi-Thread Variables” has been added,
describing a strange but useful alternate form of variable –
that exists independently in each thread. With the help of
these values, currentTextReader, currentTextWriter and cur-
rentSource are now thread-safe.

• The section titled “currentTextReader, currentTextWriter and
currentSource in Threads” has been added, describing the
thread-safe properties of these values.

• The section titled “Include” now describes the “+” template
and “?” conditional include options.

• The new afldefs.afl/afldefs2.afl-defined operators are included
in the lists of operators.

• Any mention of the “else” forms of the looping operators has
been removed.

• The “grouped arguments” for operators have been added to
the AFL2 syntax.

There’s a few additions to the samples:

• A very small, simple XML parser implemented in AFL, illus-
trating the relationship between “push”, “pull” and “DOM”
parsers.

• An include file (“midiutil.afl”) and a set of programs that cre-
ate MIDI audio files.

• The include file “xmlparser2.afl” and sample “xmltest2.afl”
have been added, doing XML parsing the .NET 2.0 way.

2 afla007 (25 July - 11 August 2005)

Dealt with a few (mostly what I consider) oversights:

• Added “rep”, “repupto”, “rep ... orMore” and “rep ... upto”
operators to “patterns.afl”, as in:

if ~: ="-" rep 80 then # match exactly 80 of "-"
if ~: ="-" repupto 80 then

match no more than 80 of "-"
if ~: ="-" rep 6 upto 80 then # 6 to 80 of "-"
if ~: ="-" rep 6 orMore then # at least 6 of "-"

• Added “streamFrom” and “streamInto” to “io.afl”. These two
operators create pairs of coroutines that are “piped” into each
other using “read” and “write” logic, and allow one coroutine
to provide the pattern matching input for another.

• Added the “scanReader” no-argument operator to “pat-
terns.afl”. It makes using the current text reader as the current
matching source easier.

• Added the *> and <* operators to “io.afl”. These operators
support “filters”, functions that perform transformations on
data read from their default input to their default output.

• Added “sourceio.afl”, supporting the “<~” and “scanFrom”
operators, combining some of the new functionality from
“io.afl” and “patterns.afl”.

• Modified coroutine logic so that each coroutine has its
own “currentTextWriter”, “currentTextReader” and “cur-
rentSource”. These values aren’t really usable in the context
of coroutines unless they are coroutine-local.

And something extra to play with:

• When you apply call syntax to a frame value, as if it were

a function or continuation value, AFL attempts to invoke the
frame’s “0callable” property. This means, for example, that
you can have functions with named properties and indexers.

3 afla006 (20 May - 13 July 2005)

A few minor language changes, one biggish one, some updates to
the Overview document, and some internal experiments:

• Added “until do”, and the “else” forms of “while do”, “until
do”, “do while”, “do until” and “for do”.

• Changed the “rethrow” operator to “resignal”, for more con-
sistency with “signal”, and less confusion with with the
“throw” keyword, which is a different thing.

• Added the “...” operator.

• Changed the “arraylist” creator from a no-argument operator
to a function, and added origin index values.

• Changed the “hashtable” creator from a no-argument operator
to a function, for consistency with the change to “arraylist”.

The changes to the creators for “hashtable” and “arraylist”,
and the renaming “rethrow” to “resignal” are the backward-
incompatibility changes for this release.

• Introduced “def op”. That’s a biggie, but it’s strictly an addi-
tion.

• “withSource” has been added to the pattern matching func-
tionality.

• The two-argument ~:, +: and -: operators in “patterns.afl”
have been modified so that they no longer persistently reset
the value of currentSource, but rather localize that resetting to
the scope of the application of the second argument.

• “withTextReader”, “withTextWriter” and “readFrom” have
been added to the I/O functionality.

As part of release 6, there are a number of changes that don’t affect
the language but help in the implementation:

• The syntax analyzer was rewritten using a pattern-matching
approach.

• The “annotater”, that gathers information about what frames
contain what names, was rewritten into a separate module. It’s
not too smart right now, but has potential.

4 afla005 (2 May 2005)

This is just a reissue of afla004 (the AFL com-
piler reports itself as a004) with a major update to
(www.wilmott.ca/afl/afloverview.html) afloverview.html.
Rereading the overview, I found that the discussion of continua-
tions was too spread around and early – they now have their own
chapter.

5 afla004 (4-8 April 2005)

Minor cleanups and revisions:

• Added the “.exceptionHandler” accessor for continuation val-
ues, and removed “ccall” from AFL0. (“ccall” is still part of
AFL1. It’s just that it now gets rewritten into “callWithEH”
form.)

2

• Added the /d run-time command-line option.

• Removed “foreach” from the language but added generator
operations “each”, “next ... to”, “next”, “forever”, “once” and
“whilst”.

The precedence numbers for comparisons and the generator
related operators have been updated to allow a few things to
be done more naturally, like “1 to 9 :++: 11 to 19” without
parenthesization.

• Added “octet” I/O to “io.afl”.

• Added the “ord” and “field” operators.

• Added the unqualified ’[...] arraylist and ’[...,...] hashtable
creator operations

• Corrected the AFL0 grammar in
(www.wilmott.ca/afl/afloverview.html)
afloverview.html: removed the “throw” from “catch:”
and the “contArg” from “{}:”.

• Changed the names of some of the generator operators for
more uniformity and ease of recognition:

– :+: to :++: (because it’s akin to string joining)

– :*: to inner (to spell it out a bit)

– :**: to outer (ditto)

– :/: to :+: (by analogy with :-:)

6 afla003 (31 March 2005)

Another minor release. A small but important addition in exception
handling, and a fix and revision in template interpolation.

6.1 Exception Handling

I’ve added a relatively primitive form of exception handling and
synchronous finalization:

try
{
doStuff ();
true # Return true if all was well.

}
except (e):

if typeOf e == "DivideByZeroException"
then false # Return false on a divide by
else rethrow e; # zero exception and rethrow

the exception otherwise.

def out: outputFile ("myOutputFile.txt");
try
{

// use "out"
}

finally
out.close ();

There are also supporting low-level facilities for
establishing and using exception handlers. The
(www.wilmott.ca/afl/afloverview.html) afloverview.html
document describes the exception handling facility and its
implementation.

There’s a supporting addition to “threading.afl”: there’s now a “crit-
ical” construct, that combines monitor locking with the facilities of
“try ... finally”.

There’s one backward-incompatibility with this release: the ’{...}
form of continuation invocation and {...} form of function call use
to allow and expression list that was processed like a parenthesized
group – evaluate all in order and return the value of the last expres-
sion. As of this release both these forms can have zero one or two
arguments:

• With zero arguments, nil is passed as the argument value (or
list).

• With one argument, its value is passed as the argument value
(or list).

In both the zero and one argument case, the current exception
handler is set as in the previous release.

• With two arguments, the first the passed as the argument value
(or list) and the second as the current exception handler of the
called continuation or function.

6.2 Templating

There was a serious error in how template interpolation worked.
Many things that shouldn’t have, got compile-time errors. It’s been
fixed. At the same time, how things are interpolated into strings by
the \{...} form has changed:

• Where the value is a string, it’s used as-is. (No change)

• Where the value is a number, it’s converted to its string repre-
sentation (as in “repr”), and that string value is used. (Change)

• Otherwise, nothing is added to the string. (No change)

This change means that the following prints “10**2 = 100”, rather
than an extra line break followed by “**2 = d”:

print "\{10}**2 = \{10*10}";

To make a character from its numeric encoding you have to convert
yourself, as in:

def tab : "\{char 9}"; # tab
def lf : "\{char 10}"; # line feed
def cr : "\{char 13}"; # carriage return

7 afla002 (16-21 March 2005)

This is a minor release, fixing some errors, adding a few minor
features, and removing a few others. It’s primary purpose is to clean
up a few rough edges and round out the pre-type-system shape of
the language. It illustrates, if nothing else, the way in which the
language changes as it develops.

I expect at least one more pre-type-system release, the major feature
of which will be a primitive form of exception handling, forming
the basis of a fuller implementation when the type system starts to
flesh out.

There have been a number of corrections to the documentation. For
non-Windows users, the shell script “aflmc.sh” has been renamed
“aflmc”. As well, the following changes have been made to the
language:

3

• The parent keyword, and the dot-qualified forms of parent,
self and throw have been removed.

These queries depended too much on a particular implemen-
tation technique for the language, excluding some implemen-
tation techniques I want to experiment with, made future sta-
tic analysis overly difficult, and don’t seem to add to the lan-
guage’s functionality. So out they go.

• The fn and cont keywords have been removed from the lan-
guage.

The only things you could previously do that needed these
keywords were using fn to prefix multiple argument lists, and
specify that operator arguments’ evaluation was to be delayed.
You can not specify multiply argument lists sans fn with the
same effect as of old:

{a} {b} : a + b # was: fn {a} {b} : a + b

and the fn keyword used in operator arguments has been re-
placed by “()” (a zero-length parenthesized group), as in:

def if [90 a] then [90 b ()] else [90 c ()]:
a (b, c) ();

was:
def if [90 a] then [90 b fn] else [90 c fn]:
a (b, c) ();

The removal of the fn and cont keywords simplifies the lan-
guage. They were initially used to help make programs more
readable, but the variety of resulting forms seems to work in
the other direction. As well, the use of () in function argu-
ments seems to be a better choice than fn, as the () following
the argument name brings its syntax closer to that of declaring
the argument name as a function.

• The way interpolated values in literal strings are handled has
changed. Previously each \{ ... } group defined a new frame,
and any defined values within the group were local to that
frame. Now, each literal string value defines a frame and
the interpolated groups within it are considered parts of that
frame. Most importantly, a program that is compiled in “tem-
plate mode” (/k=t) can now define “global” names within the
template.

To complement this change, the ’{ ... } operation has been
added. It sets and accesses a frame’s string value, providing
a lower-level rewrite for template strings, and to lower the
boundary between template and non-template oriented pro-
grams.

• “Grouped” arguments are now supported for user-defined op-
erators, as in:

def if [() a] [90 b ()] else [90 c ()] :
a (b, c) ();

as in: if (a < 0) print "negative"
else print "non-negative";

Grouped operators have two or more arguments with no inter-
vening operator name, but required that all but the last argu-
ment in a sequence be parenthesized, braced or bracketed.

Grouped arguments allow experimenting with C/Java-like
syntax.

• A number of operators have been added to the language:
– The “do ... while ...” looping form has been added.

(afldefs.afl)

– The “<<” prefix and infix operators have been added.
(io.afl) It implements C++-like output, as in:

<< "Hello World" << lf;

– The “ungenerate” function has been added. (afldefs.afl)
It converts a generator into a coroutine. For example:

def nextNumber:
ungenerate (1 to 1000, exit);

defines “nextNumber” as a function that returns a new nu-
meric value on each call.

The language changes and new operators are described in
more detail in (www.wilmott.ca/afl/afloverview.html) AFL
Overview.

4

