
Yet Another
Programming Language

Sam Wilmott

24 February 2004

Too Many Programming
Languages

• There are lots and lots of programming
languages, most of the commonly used ones
very similar to each other, bar the odd
feature and syntactic nicety. And there’s no
good (technical) reason for this plethora.

• There are also a lot of specialized
programming languages, many that should be
better known, with useful stuff in them.

Why Yet Another
Programming Language?
• So with too many programming languages

already, how can one justify yet another?
Well:

• There are important features missing from
all commonly used languages.

• Most programming languages are too
much of a compromise with ancient
hardware limitations.

Why Yet Another
Programming Language?
• Many interesting and potentially useful

features are hidden in the midst of
otherwise gratuitously different syntax,
making them inaccessible to most
programmers.

• Most programmers are still stuck with what
are essentially low-level programming
languages: C++, C#, Java, Perl, Python.

Why Yet Another
Programming Language?
• Maybe most importantly, there hasn’t been

another major Pascal language since the ’70’s
– even Pascal isn’t a “Pascal” anymore.

• Pascal was originally intended for teaching –
not just for teaching programming but for
teaching how programming language are
designed and implemented, and how much
can be done with a small language.

Why Not Just Talk
About What’s Needed?
• Mostly, because there’s been a lot of talking

over the last four decades, and talking has
been proven to not be enough.

• Most of us need to see and touch to
understand – we learn by doing.

• Most programming languages are
implemented in a way that makes it
expensive to play with their designs.

So What’s Missing?

• “Threads”, a.k.a. asynchronous threading, has
been all the rage for a long time now, but
their equally useful synchronous cousin,
coroutines, a.k.a. synchronous threading, are
rarely to be seen.

• True generators, as opposed to the “simple”
form in C# and Python, are a key feature of
any text processing applications.

So What’s Missing?

• Properly implemented generic types have
taken far too long to get into major
languages – C# cries out for them, and they
are just arriving.

• Object Oriented methodology is usually just
the thing type-system-wise, but sometimes
it’s a limitation. After-the-fact type
manipulation facilities, like unions, would
often help.

So What’s Needed?

• Lots of things – we are still in the early days
of programming language development.

• I have no idea what the future of
programming languages is, or what future
programming languages will look like.

• But I do know that there’s a lot yet to do –
in the face of massive conservatism in the
programmer community.

So What’s Needed?

• One thing that I think is needed is a new
“teaching” language – that serves in the early
21st century what Pascal did in the ’70’s.

• Such a programming language would be used
to demonstrate and to explore basic
programming language concepts and
functionality, and to provide the basis for a
discussion on where we should be going.

What Would A New
Language Look Like?

• It would have a familiar syntax (sorry Lisp)
without being overly constrained by the
conventions of current languages (sorry C).

• It would incorporate functional and syntactic
forms from the lowest level to the highest.
With, as much as possible, the higher-level
forms described in terms of the lower.

• It would be small. Small is still beautiful.

AFL – A New
Programming Language

AFL

• AFL: “Another Fun Language”.

• It has been said that the appeal of the
Python programming language is that it’s fun.

• The intent is that AFL is likewise fun, if in a
different way.

AFL

• AFL’s design is based on a number of
principles:

• Concede nothing to current hardware
design or to performance limitations.

• Keep the language as small as possible.

• Implement as much, both functionally and
syntacticly, in the language itself.

AFL

• Probably the most important feature of AFL
from a functional point of view is that it has
no “stack frame” – everything goes on the
“heap”.

• Everything, including argument lists and local
variables, are allocated so as to be
potentially persistent – there’s no a priori
assumption as to the use of any set of values
or how any name will be later referred to.

AFL

• AFL is a “prototype”, in its design,
implementation and intended use.

• All performance issues are being postponed
until the language design settles.

• AFL’s design, implementation, documentation
and use are developing in parallel: features
can be added, tested and removed quickly.

AFL

• AFL is being developed in stages.

• Stage One is functionality.

• Stage Two is a type system, including but
not limited to an object-based models
(actually more than one model).

• Stage Three is optimization – improving
performance as required to make the
language usable.

AFL and .NET

• AFL is implemented using the .NET
platform. .NET provides:

• a garbage collector,

• interesting and useful “machine”
instructions, and

• a rich and easily accessible run-time
library.

Where Things Stand

• Work on AFL started in October 2004.

• Implementing AFL isn’t the only thing I’ve
been doing: there’s been a lot of design and
experimentation.

• I’ve been learning too. AFL is my learning
tool for C# and .NET – the AFL compiler is
my first C# and .NET program.

Where Things Stand

• The current (Stage One) iteration of AFL:

• is an Algol-like dynamically typed language,

• with a compiler written in C# that
translates AFL programs to C# or to CIL
assembler language (which then can be
compiled to runnable programs), and

• with an overview document describing the
language.

Where Things Stand

• The current implementation of AFL has
arithmetic, string and logical operations,
records, hash tables, dynamic vectors, first-
class functions, user-defined operators
(multi-argument, prefix, infix and suffix),
coroutines, true generators, “if” and looping
forms, optional template programming,
asynchronous threading, pattern matching,
text file I/O and an XML parser interface.

Where Things Are
Going

• Stage Two is primarily about adding a type
system, including type definitions, a type
algebra, generic types, interfaces, objects and
classes, with multiple object models,
supporting both dynamic and static typing.

• As with Stage One, the emphasis will be on
defining as as much as possible in the
language itself, based on a minimal core
language.

Where Things Are
Going

• Besides the basics, work on ongoing
improvements in the implementation:

• Create .NET assemblies directly from the
AFL compiler: both compile-and-go and
runnable .exe files.

• More meaningful error reporting at run
time is badly needed.

• And more documentation and a tutorial.

More About AFL

www.wilmott.ca/afl

Downloads, updates and news.

