
Yet Another Programming Language

Sam Wilmott
420 Tweedsmuir Ave, Ottawa, ON, Canada

sam@wilmott.ca

Abstract

AFL is a small simple programming language, designed to illustrate
and to facilitate experimentation with some of the basic principles
of programming languages. The language supports a wide range of
control structures and rich operator definition capabilities, based on
a small core set of features, and provides access to the mechanics
of the language. The language’s initial implementation exploits the
high speed of currently available computers, focusing on function-
ality rather than performance.

This is an explanatory overview of the current state of AFL. It’s
neither intended to be a language specification nor a tutorial.

1 Introduction

1.1 Why Another Programming Language?

First and foremost, AFL is a learning exercise. I’ve been learning
while developing it, and I hope that others can learn from what I’ve
done.

The current AFL language is intended to form the foundation for
further development. In fact, my original intention in developing
AFL was to play with type system ideas, but it turned out that doing
that required a functional foundation on which to build. Hence the
current language.

Where AFL might best fit in the programming language world is
in a teaching role: helping future programming language designers
understand and experiment with different forms of control struc-
tures. There’s nothing in AFL that’s new or unique – it’s all been
done before – but even so, much of it is not as familiar as it should
be, and AFL attempts to make the mechanics of the language more
accessible.

From a use point of view, where the current AFL language differs
mostly from commonly used programming languages is in its sup-
port of a wide range of process or control-flow mechanisms. After
all, programming is about data and about process. But most of the
advances in commonly used programming languages have been in
the area of data structure. The opportunities for further major ad-
vances are primarily in the area of process and control structures.

Copyright © 2005, Sam Wilmott

1.2 Principles

The AFL languages are being developed based on a number of prin-
ciples:

• Make the AFL languages be “computing languages” rather
than “computer languages”. As few features of the languages
as are practical should be based on current computer hardware
constraints.

A lot of what’s in commonly used programming languages is
there as a compromise with hardware limitations. Such fea-
tures limit what programmers can do and how we do it. Major
limiting features of current programming languages, such as
having a single function call stack, date from the 1960’s and
should be obsolete by now. The fault is not just with program-
ming language design – current operating system and CPU
designs seem to be optimized to the needs of older-style pro-
gramming languages and programming styles.

• Make the language as easy to follow as possible. Stick with
familiar language forms where they fit, but don’t be afraid
of less familiar syntax where it easies understanding what’s
going on.

• Make the implementation as flexible as possible. The lan-
guage is easy to modify to illustrate different approaches.

• As much as possible, make low-level functionality available at
a high level. This maximizes what can be implemented using
the language itself. More importantly, it makes it possible
to explain what’s going on “under the hood” in terms of the
language itself rather than by dropping into an explanation of
computer architecture.

• Avoid any “X-oriented” approach. Although there’s a gen-
eral tendency to think of things like “object-oriented”, “func-
tional programming” or “text processing” as features of pro-
gramming languages, they are actually programming models.
AFL should, as much as possible, support different program-
ming models without being specifically oriented one way or
the other.

That said, the reader will no doubt notice a distinct bias in
favour of text processing in the facilities implemented in AFL
and its include files. That’s based on the uses I’ve made of the
language so far.

• Incorporate both arcane and familiar aspects of programming
languages.

One of the chief difficulties with currently available program-
ming languages is a tendency to assume that the core language
has a single audience – that all programmers, at all times, use

1

the same mechanisms. But one size does not fit all. There
are end-user application developers and core functionality li-
brary developers, and their needs overlap but are not the same
– many programmers fulfill different roles and have different
needs at different times.

• Develop the AFL language design, implementation and docu-
mentation in parallel – and don’t be commit to any of the three
until all three stabilize. This way, different approaches have
been experimented with, simplifications were made when dis-
covered, and focus has be placed on the easiest way to explain
what’s going on. This approach also makes the language as
self-consistent as possible, which aids in understanding and
use.

• Make the language as “extensible” as possible. Allow users
to implement their own operators and control structures. And
as much as possible in the language itself, rather than having
to fiddle with the underlying implementation.

• Avoid addressing performance issues early on. As said, this is
a computing language. This approach has two consequences:
it’s made the language easy to develop and experiment with,
and it’s made the performance of the language very slow. The
later issue has been dealt with – to some extent at least – by
investing a few thousand extra dollars in fast hardware, and
has paid off well in facilitating experimentation.

There’s no reason for the performance to remain so poor. An
optimization pass or two can improve the performance con-
siderably, as can removing some of the low-level features that
are useful in their explanatory role, but not of much use to
real-world programmers.

1.3 Why “AFL”?

“AFL” stands for “Another Fun Language”. (Or for those of you to-
tally fed up with the proliferation of programming languages, “An-
other (something else) Language”.) One of the chief stated appeals
of the Python programming language has been that “it’s fun to pro-
gram in”. I’m hoping that AFL is fun too, both because that makes
it easier to learn, and because I like having fun programming.

The AFL languages are built in layers. At present, the following
languages exist:

• AFL0 (“eh-ef-el-zero”) implements the basic core functional-
ity of all the AFL languages. It’s purposely small. Everything
outside of AFL0 is first translated into AFL0, before being
compiled into a lower-level form.

• AFL1 (“eh-ef-el-one”) implements basic syntactic and defi-
nitional forms such as functions, operators and local scopes,
simplifies the name model and manages intermediate values.

• AFL2 (“eh-ef-el-two”) consists entirely of a library of func-
tionality written in AFL itself. It implements things consid-
ered basic in most programming languages such as if-then-
else, loops, coroutines, variables and array data structures.

The “0” in AFL0 is because it’s the starting point. It’s the founda-
tion for further work. The name “AFL” is used to cover all the AFL
languages. Where it’s used, what’s said applies to all the languages.

1.4 Implementation

AFL has been developed using Microsoft’s .NET Framework under
Windows XP, and using the Mono platform under Mac OS 10.3
and 10.4. I’ve run it under Windows (2000 and XP), MacOS (10.3,
Panther and 10.4, Tiger) and Linux (SUSE 9.1).

AFL is implemented using a compiler that produces run-time code.
There’s no interpreter. At present, the compiler targets are C#
source code and CIL (.NET assembler language) source code, both
of which require a further step of compilation to .NET “.exe” as-
semblies.

Why .NET? you might ask. For a number of reasons:

• To determine whether and to demonstrate that such a language
can be implemented.

• I wanted to learn C# and learn about the .NET run-time sys-
tem. Developing AFL has been my learning tool. (The AFL
implementation is my first C# project.)

• .NET has a garbage collector and a rich library of functional-
ity, so I don’t have to bother implementing that stuff myself.

• The .NET run-time checks running code for type correctness,
which is a substantial aid in programming language develop-
ment.

• The .NET “virtual machine” has a tail-calling instruction in
the run-time code. This feature has been used extensively in
the AFL implementation of control flow structures.

• For portability: .NET and hence AFL runs on a variety of plat-
forms, thanks to the Mono Project, Microsoft’s Shared Source
CLI and the Gnu dotnet implementation.

• To explore, illustrate and push the limitations of current hard-
ware and “VM” (Java and .NET) designs.

The work could have been done using the Java language and its
run-time (JVM), or sticking to a specific computer architecture (e.g.
Intel or PowerPC). The choice of .NET over the JVM was motivated
by my wanting to learn something new, the tail-calling instruction,
and the multi-language support of .NET.

1.5 Difficulties

There’s a number of problems with the current implementation. Pri-
marily, because of the highly dynamic nature of the language, many
errors don’t show up at compile-time, and produce hard-to-interpret
results at run time. In part this is a drawback of any dynamically
typed language, and the difficulty is compounded by AFL’s “stack-
lessness” – there’s no call stack, so it’s difficult to determine the
context of an error.

It isn’t all dark however – the .NET run-time does catch most type
errors. As well, the AFL implementation includes tracing facilities
and AFL-specific run-time checks. Further work could improve the
situation, for example determining a problem’s context in common
use cases.

The other difficulty with the current implementation is that it’s
amazingly slow – it’s not really usable other than for small exam-
ples at present. No attempt is made to optimize the code, even in
the simplest and most obvious way. Again, a major improvement
in this area could be achieved with the introduction of some basic
optimization. It’ll never be a really fast implementation though: the

2

availability of continuations in all contexts makes some important
optimizations difficult.

1.6 Where AFL Stands And Where It’s
Headed

As a family of languages, AFL is a work in progress. It’s best to
think of the current generation of AFL languages and their imple-
mentation as a prototype. The syntax currently used is suitable for
explaining ideas, but not necessarily the best for day-to-day pro-
gramming. The language and its implementation can be readily
“skinned” with alternative syntax, so I don’t worry a whole lot about
that.

The current AFL language has very little to say about type issues
– neither declarative nor deduced. This makes it weak as a “real”
programming language. On the other hand, the absence of type
information helps highlight those parts of a programming language
that are processing forms – it’s in this tutorial role that the current
language’s strength lies. Much more could be said about the current
language and needs to be to make it really useful.

Having trolled the depths of processing forms, it’s time to move
on to type issues, and their interaction with processing forms. And
onto processing forms that require type to make them work: dis-
criminated exception handling, type-identified functions and oper-
ators, and rule-based programming. To fit all that in in a clean man-
ner, will require substantial changes to the language – for example,
the looping forms will have to be modified to provide for type in-
formation without making them too clumsy for use.

My primary motivation in this work, in addition to its explanatory
role, is to form a basis for rethinking and illustrating what is needed
in our main-stream programming languages in order to make them
more text- and markup- (XML) friendly. To too great an extent, the
most commonly used languages have designs based on the numeric
and system programming needs of the past, and too little on current
needs, particularly in the processing of textual data.

1.7 Where AFL Comes From

The design of AFL is inspired by a variety of sources. Coroutines
were a major feature of the first object-oriented programming lan-
guage, Simula[6]. Stackless programming was the chief innovation
of the Oregano programming language[2]. Full-function generators
are a key feature of the Icon text-processing language[4]. (Icon has
coroutines too.)

My own interest and work has largely focused on designing and
developing tools, primarily languages, for storing, transmitting and
processing text, both free-form and marked-up (e.g. XML). An
early language for typesetting was HUGO[3]. A later language
for text and markup (primarily SGML and XML) processing is
OmniMark[8]. In this work, I and others have had to “fake” corou-
tines time after time – by storing program state in data state, and
having to recreate the program state when resuming a coroutine.
This is generally an expensive way of developing software: not only
does it add considerable complexity to the initial implementation,
but the difficulty of maintaining this form of implementation tends
to retard development of such software.

The late arrival of convenient-to-use “pull” parsers for XML[11],
following DOM[10] and “push” (a.k.a. SAX[5]) model parsers by
almost a decade, is entirely a result of the absence of coroutines

in “main-stream” programming languages. In a language that sup-
ports coroutines there’s no difference between the implementation
of the pull and push models. Current pull-model XML parsers are
actually only partial implementations of the pull model – they still
“push” entity-side and resource requests – a symptom of the dif-
ficulty of implementing full pull-model parsing in non-coroutining
languages. (I implemented a full pull-model SGML, and later XML
parser in the early ’90’s. It’s still used by the OmniMark program-
ming language implementation. I suspect it’s the only one of its
kind in existence even now. It wasn’t an easy job, and was hard to
maintain.)

Continuations have been presented as an implementation vehicle
by Andrew Appel[1] and others – with the continuations in a
lower-level target language than the source language being imple-
mented. They appear in various programming languages including
Scheme[7].

Self-defining highly extensible programming languages have been
the goal of many language development projects. The most wide-
spread success of this kind has been object-oriented programming:
objects allow the user to define their own types. The ongoing appeal
of the Lisp family of programming languages (of which Scheme’s
a good example) is also largely a result of their being easily exten-
sible.

1.8 Getting AFL

The language described by this document is available, together with
whatever’s happened in the meantime, at <www.wilmott.ca/afl>.

2 The Language: The Familiar

This chapter outlines the parts of AFL that are common in Algol-
like programming languages. The familiar – what everyone’s seen
in other languages – is presented first to help get a feel for the shape
of the language.

This chapter primarily describes AFL2, because that’s where the
most familiar part of the language reside at present.

2.1 The Basics

AFL is an “expression-oriented” programming language: every-
thing other than a name declaration has a result value. (A name
declaration is a component of an enclosing value.) Any value can
be passed, assigned or returned. Not only does everything have a
value, every value has a type, although the AFL2 compiler doesn’t
know the type of many names.

AFL’s syntax is largely a mixture of C and Pascal (actually Algol
60) styles, with a bit of a preference to the latter. Programs are
“free form” – line breaks are treated as white space. Comments are
treated as white space and can be entered in two forms:

• A “#” (hash or octothorp) that’s not a character within a string
and anything following it in the same line is a comment.

• A “/*” and everything up to and including the next “*/” is a
comment. Nested comments are not (currently) supported.

3

2.2 Hello World

Many programming language tutorials start out with the language’s
take on the “Hello World” program: the simplest program that
prints out “Hello World”. Here’s the Hello World program in AFL:

"Hello World"

The program is one expression: the string “Hello World”. Like all
expressions, a program has a result value. AFL prints out the result
value of a program as a whole if it is a string. Making the last line
of a program be the string “OK” or something similar is a simple
way of making sure the program has run to completion.

If the result of a program is an integer value, that value is used as
the exit code of the program. In any other case the exit code is 1 if
the program ends in an exception and 0 if not.

A more traditional form of the Hello World program is the follow-
ing:

print "Hello World"

Here what’s done with the string is explicated. The result of the
“print” expression is neither a string nor a number, so “Hello
World” is all that’s displayed, and the program’s exit code is 0.
(The “print” operator itself returns a value of nil.)

There’s an even simpler Hello World program that works if you
specify /k=t on the AFL compiler’s command line:

Hello World

That’s “Hello World” without the quotes. This is AFL being used
as a templating language.

2.3 Names

All named things are defined in AFL with the def declaration:

def HelloWorld : "Hello World";
HelloWorld

Successive declarations and expressions are separated by semi-
colons or commas. (User choice, but they can’t be mixed in one
sequence.)

A defined name using the colon forms is a constant, not a vari-
able. The name “HelloWorld” is bound to the value “Hello World”.
All names are constantly bound to some value, although that value
may itself be mutable – a variable. Names are case-sensitive:
“HelloWorld” and “helloworld” are different names.

Some names are “reserved”, which means that they are part of the
AFL language and are not available for user definition. All names
that can be interpreted as number are reserved, as are the keywords
of the AFL language. No name is reserved if it is entered using the
escaped string form.

2.4 Functions

Functions are defined by following the name in a definition with a
list of argument names. What follows the colon is the “body” of the
function. Evaluating the body produces the result returned from the
function:

def f (greeting): greeting ++ " World";
f ("Hello")

Functions can be defined recursively:

def factorial (n):
if n == 0 then 1 else n * factorial (n - 1);

A function can have zero or more arguments, specified in parenthe-
ses.

2.5 Local Scopes

A “local scope” is zero or more definitions, interspersed with ex-
pressions, followed by one or more expressions, enclosed in curly
brackets:

def sqrt (n):
{

def a = 1;
def b = n;
while *a < *b do
{
b = (*a + *b) / 2;
a = n / *b;

};
*b;

};

Names defined in a local scope are visible throughout the scope
(bounded by the curly brackets): there is no “define before use”
requirement.

Anything that can be declared can be declared anywhere. For ex-
ample, functions can be defined inside functions.

Curly brackets are implied around an AFL program as a whole –
they can be omitted at the top level.

2.6 Variables

A variable is a name bound to a mutable location in the computer’s
memory. This relationship is indicated by using the conventional
assignment operator in place of the usual colon in a definition:

def HelloWorld = "Hello World";
*HelloWorld

“=” creates a mutable location and uses the value it prefixes as the
initial value of that location. In the example, “Hello World” is the
initial value of the “HelloWorld” variable.

The prefix “*” (star or asterisk) operator “dereferences” a variable
and produces its value. Use of a variable’s name without a pre-
ceding asterisk always yields the variable itself, suitable for later
dereferencing, or assigning to. A variable is a value (a “variable
value”) and can be passed around like any other value. Assignment
is the usual Fortran/C-derived “=”:

def HelloWorld = "Goodbye cruel world";
HelloWorld = "Hello World";
*HelloWorld

If you really want a to declare a variable without initializing it
there’s an abbreviated form of declaration with no right-hand-side,

4

which initializes the variable’s value to nil:

def HelloWorld;
HelloWorld = "Hello World";

More general definitition of variables and use of the “*” and “=”
operators is described in (3.2.7) Variables Revisited.

2.7 Numbers and Arithmetic

You can specify numbers in either decimal or hexadecimal (base
16). A non-negative decimal number must start with a decimal
digit followed by zero or more decimal digits and underlines (e.g.
1_000_000). A non-negative hexadecimal number must start with
“0x”, followed by a hexadecimal digit and then zero or more
hexadecimal digits and underlines (e.g. 0xFF).

A negative number is specified by prefixing its non-negative value
with an underline, as in _1 (i.e. -1). Negative numbers and negating
numbers (i.e. prefixing numbers with “-”) are kept distinct.

The general arithmetic operations are available: +, -, * and /. Both
+ and - can be used infix or prefix. The “remainder” operation uses
the symbol \. There are two variant division operators: // and \\ are
divide and remainder differing from / and \ in that / produces a result
rounded towards zero and // produces a result rounded down. \ and
\\ give the remainder from the corresponding / and // operators. In
the case of \\ it means that its result is always non-negative, a useful
operator for doing numeric conversions.

def x = 4;
x = 7; # The result of the program, i.e. its
3 + *x # exit code, is the number 10.

There’s an operator for converting values to numbers: toNumber:

print repr x ++ " = " ++ toNumber x;

toNumber converts its argument value to a number if it’s at all
doable: if it’s already a number, if it’s a .NET enumeration
(“enum”) value, or if it can be converted to a string with the syn-
tax of a number. If it can’t be converted, toNumber returns zero.
toNumber is quite forgiving in its interpretation of string values,
accepting C-style and AFl-style, decimal and hexadecimal strings,
and allowing commas, spaces or underscores as digit separators.

All the arithmetic operations are available (for variable left-hand
arguments) in “do it and assign” forms:

+= -= *= /= \= //= \\=

2.8 Strings

String literals are specified surrounded by " (“double quotes”) with
\ (backslash) as the escape characters, as in the C-family languages.

2.8.1 String Operations

There are a few operators on strings and string values:

"Hello" ++ " " ++ "World" # Join strings together.
"*" ** 80 # Repeat string 80 times.
length "Hello World" # The number of characters.
"Hello World" take 5 # First 5 characters.

"Hello World" drop 5 # All but the first 5 chars.
repr 5 # String representation.
char 48 # Unicode char. with given number.
ord "a" # Unicode number of the character:

arg. must be one character.
toUpper s # s all in upper-case
toLower s # s all in lower-case.
tab # A tab character.
lf # A line-feed.
cr # A carriage-return.

The arguments of ++ and the first argument of ** are automatically
repr’ed, so one can join numbers – with a string result always.

tab, lf and cr are names for the native tab, line-feed and carriage-
return characters respectively. These values can be used as-is or
interpolated into strings using the \{...} notation, as in these two
equivalent expressions:

printinline "first" ++ tab ++ "second" ++ cr ++ lf;
printinline "first\{tab}second\{cr}\{lf}";

The infix string operations are available (for variable left-hand ar-
guments) in “do it and assign” forms:

++= **=

2.8.2 String Literals

Escaping within strings has a mixture of conventional and non-
conventional forms:

• \\ and \" represent \ and " respectively. These are the only
“built-in” character escapes.

• \ plus zero or more spaces or tabs, plus a line-end is ignored.

• Two or more adjacent strings are joined together and treated
as a single string.

• Line breaks are allowed within a string when not in template
mode and when not prefixed by \ only if the next following
non-empty/non-blank (not even with just a comment in it) line
starts with a quote. In that case, the line-end is considered as
part of the string, but the following spaces tabs and quote are
not.

• \{exprs} within evaluates the expressions, and any definitions
within them, and incorporates them within the string if the
result is a string or number. If it’s a string, it’s incorporated as-
is, with no requirement for further escaping. If it’s a number,
it’s first converted to its text representation. If it’s neither a
string nor a number, the result is ignored. How values and
definitions are used in string literals is described in more detail
in (3.2.2) Strings As Frames.

• \{.} is ignored except where it terminates extended string
mode. (Note that “.” is not a valid expression, so this se-
quence is unambiguous in its intent.)

• Any \ not part of one of the above sequences, and any other
character other than a \ or " is left “as-is”.

2.8.3 Extended and Template Strings

There are three forms of extended and template strings:

5

• \+ within a string literal says to treat all following characters
as string characters up to and not including the four-character
sequence \{.} – which terminates this extended string mode.

Where the \+ is used, if it is immediately followed by zero or
more spaces and tabs followed by a line-end, then that white
space up to and including the line-end is ignored, so that the
extended format string can start at the start of a line – appro-
priate if it’s large and multi-line.

• Any “<” immediately followed by a letter starts an “XML
template”. An XML template is only terminated by the XML
end tag corresponding to that which started the string. The
name in the initiating start tag is used to recognize the end tag.
Nested uses of the same tag are recognized, as are “empty”
tags (start-like tags ending in “/>”).

• If template mode is specified on the command line (/k=t), then
the whole program is a single extended format string.

Only \{ embedded expressions and \{.} are recognized in template
mode. \{.} is ignored unless the template mode started with \+, in
which case it returns the string to “normal” mode. In XML tem-
plates, /k=t template mode, and in “normal” mode, \{.} is ignored.

2.9 If-Then-Else and Logical Expressions

The if-then-else conditional is more Pascal/Algol-style than
C/Java-style, with an explicit then keyword and no required paren-
theses around the condition. if-then-else, like everything else, can
be used as an expression.

def abs (n):
if n >= 0 then n else -n;

if-then can be used without an else part. if-then-else can be used
in an expression. It returns the result of evaluating either the then
or the else part. If there’s no else part and the if part returns false,
the if-then returns nil.

Expressions and declarations are separated, not (as in C, Java etc.)
terminated by semicolons. There are two cases where this might
cause difficulty for those of us used to the C convention:

• A semicolon in front of else will separate it from the earlier
parts of the if-then and puts it at the start of a new expression
– where it’s invalid. For example:

if x >= 0 then
print "x is negative"; # Semicolon invalid.

else
print "x is non-negative"; # Semicolon valid
if preceding another component expression.

• A closing curly brace is insufficient to terminate an expres-
sion, so a semicolon is need following a curly that ends an
expression:

if x < 0 then
{

x = - x;
}; # required semicolon

print "absolute value of x = " ++ x;

The values true and false are defined with the standard logical op-
erations:

a || b # a OR b

a && b # a AND b
! a # NOT a

The infix logical operations are available (for variable left-hand ar-
guments) in “do it and assign” forms:

||= &&=

2.10 Comparisons

The six comparison operators are supported:

A == B equal
A != B not equal
A < B less than
A > B greater than
A <= B less than or equal
A >= B greater than or equal

For == , if the operator’s two arguments are of the same type, and
are the same value, true is returned. Otherwise, false is returned.
For !=, the test made by == is inverted.

For <, >, <= and >=, if the operator’s two arguments are of the same
type, and are of a comparable type (like string or number), they
are compared and true or false is returned accordingly. If the
arguments are of different types or are not comparable, then false
is returned.

2.11 Loops

There are a variety of looping forms available. Each of the follow-
ing loops print the numbers from 1 to 10:

for 1 to 10 do (i):
print i;

for 1 by 1 to 10 do (i):
print i;

returnFrom
for 1 by 1 do (i):
{

print i;
if i >= 10 then

return nil
};

def i = 1;
while *i <= 10 do

{
print *i;
i += 1;

};

def i = 1;
until *i > 10 do

{
print *i;
i += 1;

};

def i = 1;
do {

6

print *i;
i += 1;

} until *i > 10;

def i = 1;
do {

print *i;
i += 1;

} while *i <= 10;

def i = 1;
loop (exit):

{
print *i;
i += 1;
if *i > 10 then

exit ’{}
}

The for loop specifies the values to be generated between for and
do and the name to which each value is bound each time around in
curly brackets followed by a colon after the do. Placing the name
of the control variable after the do keyword is a bit unusual, but
there’s a reason for it: the scope of the bound name is the expression
(“print n”) it prefixes, not including the expressions between for
and do.

The “while-do”, “until-do”, “do-until” and “do-while” loops do
what they do in other languages.

return exits from a returnFrom and provides a value to be returned
(nil in this case).

The “loop” loop loops forever. It specifies an name (in this case
“exit”) that can be used to exit the loop – any name can be used.
exit is invoked in a special way, like a function, but using ’{ ...
} (with an opening quote+curly). This distinct notation is used for
one-way, non-returning call-like transfers, and is described in more
detail in “(4) Continuations”. Like the { ... }, non-argument-list
form of function call, a value can be expressed within ’{ ... } or not.
If so, it is returned from the loop. If not, nil is returned.

Loops can be nested. In the case of the loop loop, different levels
of loop can have different exit names, allowing exiting from outer
levels of loop. Alternatively, returnFrom/return can be used as an
exit mechanism.

2.12 Exception Handling and Finalization

There are times when a program does a non-local exit on you with-
out an explicit initiation. For example, if you divide a number by
zero, you’re not going to get a result from the division – the pro-
gram’s got to do something else, and that something else is to go
somewhere else.

There are two forms of try available that give you control over im-
plicit non-local exits: try ... except and try ... finally. And ways of
explicitly signaling such non-local exits.

2.12.1 Try Except

In AFL you can specify where an implicit non-local exit is caught
using the try ... except construct:

try
something that might divide by zero or cause
an implicit non-local exit in some other way

except (e):
to be done for an implicit non-local exit

The value passed to the except is a .NET Exception object. It’s “e”
in the example. There are two useful and easily accessible pieces
of information available for .NET Exception objects:

• Applying repr to an Exception or just printing it returns the
text of a useful error message:

except (e):
print e;

• Applying typeOf to an Exception returns the name of the Ex-
ception – useful in distinguishing Exception types:

except (e):
if typeOf e != "DivideByZeroException" then

print e;

If there’s an exception within an except part, the except outside of
the try if any, is the one used.

Both the try and except parts can return values. Like everything
else in AFL, try ... except is an expression. For example:

def quotient: try a / b except (e): 0;

In this example, the expression following the colon returns the quo-
tient if the divide succeeds, and zero if it doesn’t.

2.12.2 Try Finally

Sometimes there’s something you want done at the end of a piece
of code no matter what happens within that code, there’s the try ...
finally construct:

try
what may terminate with an Exception
or return a value

finally
something that is done no matter what

If the try part doesn’t terminate with an Exception, its value is the
result of the try. Whether or not it does, the finally part is per-
formed and its value discarded.

2.12.3 Signaling

You can signal an Exception using signal:

if b == 0 then
signal "attempt to \{a} / 0";

a / b

signal creates a generic exception with the message text given fol-
lowing the keyword signal issues it for capture by outer try ... ex-
cept constructs.

2.12.4 Resignalling

If an except finds it has an Exception is doesn’t want to deal with it
can reissue the Exception using resignal:

7

except (e):
if typeOf e != "DivideByZeroException" then
resignal e;

2.12.5 Return

A function returns the value of the expression used as its body.
That’s often good enough. But sometimes you want to return a
value from somewhere inside the function’s body:

returnFrom
Something that returns a value as an expression
or uses "return".

returnFrom evaluates the following expression, returns its value
if there is one, or returns the value supplied by return if any. For
example:

def div (a, b):
returnFrom
{

if b == 0 then
{

print "attempt to \{a} / 0";
return 0;

}
a / b;

};

Unlike other languages, AFL decouples functions and returning, so
a return can be done out of nested program logic. A return can also
exit multiple functions, if the return occurs nested more deeply in
function calls than its corresponding returnFrom.

2.12.6 Lots of Dots

“...” (that is the name consisting of three dots) is a no-argument
operator that signals an exception. “...” is useful in a number of
ways:

• It serves as an active run-time “not reached” marker – if you
ever get there you get told about it.

• It can serve as a “stub” – you can use it as the definition of a
function that you haven’t yet got around to implementing:

def TranslateFromElvishToKlingon (text): ...;

2.13 Records

A record is a set of names bound to values. A record is defined by
a set of definitions enclosed in curly brackets:

def r :
{
def field1 : "Hello";
def field2 : "World";

};
print r.field1 ++ " " ++ r.field2;

Accessing record fields is done by suffixing a record-valued expres-
sion with a period and name: the value to which the name is bound
is the value returned.

A record value is always a reference: passing and assigning such a
value doesn’t copy the record.

If a variable contains a record reference value, the record’s fields
need a dereferencing first. Field selection binds more tightly than
dereferencing (actually field selection binds more tightly than al-
most anything else) so parentheses are required to make the deref-
erencing happen first:

def rr =
{
def field1 : "Hello";
def field2 : "World";

};
print (*rr).field1 ++ " " ++ (*rr).field2;

Records can have creators defined for them by having a record be
the result of a function. For example, the following function returns
a record with “re” and “im” fields:

def complex (r, i):
{

def re : r;
def im : i;

};

Records can have “destructor/terminator” logic defined for them us-
ing the atEnd keyword. atEnd is placed following the definitions
of the record and is itself followed by the expressions providing the
record termination logic:

def complex (r, i):
{

def re : r;
def im : i;
atEnd
print "complex (\{re}, \{im}) is about to "

"disappear";
};

The empty record can be specified as {} (i.e. curlys with no defini-
tions). Alternatively, the keyword nil returns an empty record value
(always the same one, which is useful for comparison).

2.14 Dynamic Array Types

One can construct lists, trees and such using records. For other
commonly-used aggregate data types, AFL2 supports two further
mutable aggregate types: arraylist and hashtable.

2.14.1 ArrayList

An arraylist is a one-dimensional, zero-indexed, variable-sized
array – a vector. A new arraylist is created by the “arraylist”
function. The resulting arraylist has a number of operations defined
on it:

def a : arraylist (0); # Create an arraylist
with a zero origin index.

a [] = 3; # Add an element to the end.
print *a [0]; # Get the item at the indicated

index (needs a dereference).
a [1] = 7; # Insert a new item at the

given index (doesn’t replace).
print *a []; # Get the last-most item.
a.remove (0); # Remove item at the index.
a [0].remove (); # Thee same thing.
a [].remove (); # Remove the last-most item.

8

print a.count (); # The number of items.
print a.lowbound () # Index of the first item.
print a.highbound () # Index of the last item.

A useful alternative form of adding items to an arraylist uses the
alternative indexing syntax:

arraylist (0) ’[now]

The ’[...] adds the enclosed value to the given arraylist, and re-
turns the original arraylist. This allows more items to be added,
and for the arraylist to be used in other ways. The ’[...] op-
erator can also be used stand-alone. The following expression is
equivalent to the last one:

’[now]

Multiple uses of ’[...] can be chained, adding each value to the cre-
ated arraylist. For example, this definition creates a 3 item arraylist
and passes it as the function call’s second argument:

mailTo (message, ’["george"] ’["fred"] ’["harry"])

Although the arraylist function is used in these examples to pro-
duce the original value, any arraylist value expression can be
used.

In addition to the above operations, each arraylist has a generator
yielding the arraylist’s items:

for a.generate do (v):
print v;

Each of the values of that arraylist are generated in succession,
and bound to the name in the “do (...):”. See (3.7) generators for
more on using generators, especially the useful “each” that allows:

for each a do (v):
print v;

2.14.2 Arraylist Origins

The arraylist creator function takes a numeric argument. This
value is used as the created arraylist’s “origin”: the index number
of its first value, if any.

For the last three decades, zero has been the conventional index of
the first item of an array. There are uses for other first-item indexes.
For example, many sequences of things are more naturally counted
from 1 rather than zero. Requiring the origin to be specified when
an arraylist is created, even when it’s zero, seems a small price to
pay for the ability to choose a different origin when appropriate.

The “.lowbound” arraylist method always returns the arraylist’s ori-
gin index value.

2.14.3 Hashtable

A hashtable is a one-dimensional, key-indexed, variable-sized ar-
ray. A new hashtable is created by the “hashtable” function. The
resulting hashtable has a number of operations defined on it:

def h : hashtable ();
h ["alpha"] = 3; # Add or replace item.
print *h ["alpha"]; # Get value with key.

if h.contains ("alpha") then print "Has alpha";
True if the hashtable has a value with the key.

h.remove ("alpha"); # Remove item at key.
h ["alpha"].remove (); # The same thing.
print h.count (); # Number of items.

A useful alternative form of adding items to an hashtable uses the
alternative indexing syntax:

hashtable () ’["bk", "urn:sample"]

The ’[...] operator adds the enclosed key/value pair to a
hashtable, and returns the original hashtable, allowing more
key/value pairs to be added, or allowing it to be used otherwise.
The ’[...] operator can also be used stand-alone. The following
expression is equivalent to the last one:

’["bk", "urn:sample"]

Multiple uses of ’[...] can be chained, adding each key/value
pair to the created hashtable. For example, this definition creates
“hextable” with 16 key/value pairs:

def hextable :
’["0", 0] ’["1", 1] ’["2", 2] ’["3", 3]
’["4", 4] ’["5", 5] ’["6", 6] ’["7", 7]
’["8", 8] ’["9", 9] ’["A", 10] ’["B", 11]
’["C", 12] ’["D", 13] ’["E", 14] ’["F", 15];

In addition to the above operations, each hashtable has a generator
yielding the hashtable’s key/value pairs:

for h.generate do (k, v):
print "h [" ++ k ++ "] = " ++ v;

Each of the key/value pairs of that hashtable are generated in suc-
cession, with the key and the value bound to the two names in the
“do (...):”. See (3.7) generators for more on using generators, espe-
cially the useful “each” that allows:

for each h do (k, v):
print "h [" ++ k ++ "] = " ++ v;

2.15 Parentheses

Any value can be placed in parentheses. This is usually done
where operator precedence would otherwise get the evaluation or-
der wrong, as in:

c = (a + b) / 2;

It can also be used to group a sequence of expressions. The result
of the sequence is the last expression:

n = (instanceCount += 1; instanceCount);

Because everything (other than a declaration) is an expression in
AFL, everything can be parenthesized. For example, the following
is valid:

def i = 0;
def f (n): n * 2;
(i) = (f) (n); # Variable and function name

parenthesized.

9

2.16 Parentheses, Braces and Brackets

AFL makes heavy use of parentheses (...), braces {...} and brack-
ets [...] to express all the syntactic forms it supports. In fact, three
aren’t enough, so AFL also supports a variant of each of these with
a prefixing apostrophe on the opener: ’(...), ’{...} and ’[...]. There
are three primary contexts in which each of these forms can ap-
pear, with distinct meanings in each case, making for 18 potential
combinations:

form in a definition
header

as an expres-
sion

as a suffix

(...) function argu-
ment list

parenthesization list-form func-
tion call

{...} function argu-
ment

local scope
record or frame

non-list-form
function call

[...] operator prop-
erty indexer

anonymous in-
dexing

qualified index-
ing

’(...) not (yet) used tuple expression not (yet) used
’{...} continuation template value continuation

call
’[...] alternative

indexer
anonymous
alternative
indexing

alternative
indexing

Where:

• “in a definition header” means between def and the following
“:”, as in:

def f (n):
def g {a} {b} {c}:
def [150 a] + [151 b]:
def [x,y]:
def now []:

• “as an expression” means where the form is all of a value
expression, as in:

x = (*y + 3) * 7;
(i) = *(j);
def complex (r, i) : {def re : r; def im : i};
print "fourth item = " ++ [3];
def list : ’("a", "b", "c", "d");

• “as a suffix” means where an argument, argument list or in-
dexer typically occurs, as in:

writeline ("Hello World");
writeline {’("Hello World)};
print "a [3] = " ++ a [3];
hashtable () ’["bk", "urn:sample"]

This is a bit much for a “real” programming language, but helps
serve AFL’s intended use as a language for experimentation.

2.17 Semicolons and Commas

Semicolons and commas separate adjacent expressions. They are
required where such a boundary isn’t indicated by some other key-
word or parenthesization. Their primary use is in curly-brace and
parenthesized grouping where there are one or more expression in
a row, or where there’s an expression following a declaration that
itself ends in an expression.

There are number of other places where a semicolon or comma is
allowed but not required:

• at the beginning or ending of a (), { }, [], ’() or ’{ } group,

• immediately prior to the def, atEnd, include or exter-
nalModule keyword,

• immediately after the atEnd keyword,

• immediately after the string following the include or exter-
naModule keyword, and

• immediately following another semicolon or comma.

So all the following are allowed:

(;;;)
{;x;}
{x; def y : 1; y;}
{x def y : 1; y}
{;;x;; def y : 1;; y;;}

Colons and semicolons may be used interchangeably. But you can’t
use both in the same sequence. Both the following are allowed:

f (x,y,z)
f (x;y;z)

but the following isn’t:

f (x,y;z) # invalid

As was noted earlier, semicolons and commas are separators, not
terminators, so the following is invalid:

if x > 0 then
y = x; # Invalid: it puts the "else" in

a separate expression.
else

y = -x; # Valid if not followed by another
"else" or the like.

2.18 Include

Anywhere in an AFL program, you can put an include command:

include "patterns.afl";

An include incorporates the text of the specified file in the program
where it occurs.

An include separates expressions. The following is invalid:

def f : include "fndef.afl"; # invalid

The effect of this definition can be achieved by parenthesizing or
curly-bracing the include:

def fndef : {include "fndef.afl"}; # valid

The latter definition includes the named file (assumed to contain
nothing but definitions), but makes all its definitions parts of the
“fndef” record, meaning they need a “fndef.” prefix for access
outside of that record. The explicit self (described latter) ensures
that it is the record that is bound to the name “fndef” and not some
other value produced within the included file.

There are two options that can be specified for an included file:

10

• If the file specification is prefixed with a “?” then the include
is “conditional”: if the file has already been included, whether
conditionally or not, then it is not included. Conditional in-
cludes help ensure that what an include defines is not multiply
defined. For example:

include "?patterns.afl";

• If the file specification is prefixed with a “+” then the include
is treated as a (2.8.3) template string:

printinline (include "+mytemplate.txt");

The two options can be combined (“?” must come first), but care
has to be made that doing so makes sense:

printinline (include "?+mytemplate.txt");

3 The Language: The Not-So-Familiar

The non-familiar is what’s not found in commonly-used program-
ming languages. It’s where AFL starts to get strange but also where
underlying ideas start to get explained.

3.1 More About Names

A name in AFL0 can be any of the following:

• Any sequence of one or more letters, digits, “_” or “$”.

• Any sequence of one or more of the symbolic characters “~”,
“`”, “!”, “@”, “$”, “%”, “^”, “&”, “*”, “-”, “+”, “=”, “|”, “:”,
“<”, “>”, “?”, “/” and “\”.

The character “$” can appear in either the letter/digit form
or the symbolic form of a name. You can’t otherwise mix
letters/digits with symbols unless you quote the name.

• Any sequence of one or more periods (“.”).

• A string prefixed by a single quote. e.g. ’“Hello World”. In
this example, the space is part of the name. Prefixing doesn’t
produce different names. The following two names are the
same:

HelloWorld
’"HelloWorld"

• A name that would be otherwise interpreted as a number pre-
fixed by a single quote. e.g. ’1 is a name not a number.

A name that would be otherwise interpreted as a number need
not be prefixed by a single quote if it immediately follows a
period – i.e. if it is explicitly a field name. In field definitions,
the single quote form is required.

All the following are valid names:

HelloWorld
_
__0
1st
+
++++++
...
’"1"
’""
’1
$<$

Clearly, there’s a great deal of opportunity for silliness. On the other
hand, there’s opportunity for legitimate experimentation.

Reserved names are anything that is a valid number, plus the fol-
lowing names:

, . atEnd catch ccallWithEH contArg
def exceptionHandler externalModule
include nil operator throw self

There are two names that require care in their use:

• The sequence “/*” can be interpreted as either the start of a
comment or as a name or part of a name:

– If “/*” is found where white space is allowed or required
it’s the start of a comment.

– If “/*” is found within a name, it’s part of that name.

– Name quoting forces interpretation as a name:

’/* ’"/*"

• The sequence “<” followed immediately by a letter can be
interpreted as either the start of an XML string or as two sep-
arate names, one ending in “<” and the next starting in the
letter:

– If “<” is found within a name, as in “<<a”, it’s part of
that name.

– If “<” followed by a letter is found elsewhere, it’s an
XML string.

– Anything other than a letter following a “<” makes it
a name. Putting spaces around infix operator uses is a
good convention.

– Name quoting forces interpretation as a name:

’<a ’"<"a

In both these cases, there are two names in a row: “<” and
“a”.

3.2 Frames

Local scopes and records look very much the same in the way they
are defined and what can be defined within them. They are sur-
rounded by curly braces, the names of things within them are spec-
ified using def, they can have an atEnd part, and anything can be
defined within them. This similarity is because they are the same
thing. They are both “frames”.

A frame is one of the two core kinds of type in AFL. (The other
is the (4) continuation, described later.) A frame is a set of named
properties, returning a result, with optional associated termination
logic. The primary difference between a local scope and a record is
what value is returned:

• A local scope follows its definitions with one or more expres-
sions, the last of which is the result value of the local scope.

• A record has no stated result value. Its result value is the frame
itself, with its named properties accessible using that value.

3.2.1 Defining and Using Frames

Frames may contain interspersed expressions and declarations: ex-
pressions can precede declarations. For an expression’s value to be

11

the result of a frame, the expression must follow all other declara-
tions and expressions in the frame. If the last thing in a frame (other
than an atEnd) is a declaration, the frame’s result is the frame itself.

A frame can explicate its result value using the keyword self:

def r :
{
def field1 : 1;
def field2 : "Hello World";
self

};

self can be used anywhere within a frame. Care, however, needs to
be taken in its use, because a lot of AFL is implemented by rewrit-
ing higher-level functionality in terms of lower, including frames.
This can make self refer to something not expected. For example,
the following will not do the expected thing, because self within the
function refers to the local frame used to hold function instantiation
properties:

def r :
{
def field1 : 1;
def field2 : "Hello World";
def getSelf (): self; # does the unexpected
self # does the expected

};

Frames and their names in AFL are tied to any code appear-
ing within them. For example, the following frame (within
the “newCounter” function) returns the function “c”, so that
“newCounter” returns that function value. Each invocation of
“newCounter” creates a new frame with its “n” initialized to
0, and it returns a new instance of “c”. As a consequence,
“anotherNumber1” and “anotherNumber2” are each bound to a
different instantiation of the function, and each returns its own se-
quence of numbers:

def newCounter :
{
def n = 0;
def c ():

{
n += 1;
n

};
c # the function c is bound to name newCounter

};
def anotherNumber1 : newCounter ();
def anotherNumber2 : newCounter ();

A simple way of remembering what’s going on is that if a piece of
code to which you can get can see a name, that name is still “alive”.

At present there’s no concept of “privacy” for frames. However,
consider the following definition:

def r :
{
def a : 1;
{

def b (): a;
}

};

The inner frame is returned by the outer frame. So it’s the inner
frame that’s bound to the name “r” – the frame with the property
“b”. The name “a” is inaccessible outside of these two frames: it’s
effectively private to the frame/record bound to “r”.

3.2.2 Strings As Frames

As noted in (2.8.2) String Literals, within a string literal or template,
\{ ... } can be used to embed a string or numeric expression within
the string value. More particularly, the following happens:

• For each string literal, including XML templates and a pro-
gram in /k=t mode, a frame is created.

• Within a \{ ... } embedded in a string literal or template there
can be one or more expressions and definitions. The expres-
sions and definitions are part of the string literal’s frame.

• For each \{ ... } that returns a value (i.e. does not end in
a definition), the value is examined and incorporated in the
string value as follows:

– If the value is a string value, then that string value is
incorporated in the overall string as-is.

– If the value is a numeric value, then that number is con-
verted to its text representation and that text is incorpo-
rated in the overall string.

– If the value is other than a string or number, then the
value is ignored, and nothing is added to the overall
string.

• The value returned by the frame is the sum of all the literal
characters and \{ ... } results within the string literal or tem-
plate.

There is no provision for an atEnd part for a string literal or tem-
plate.

3.2.3 Frames As Strings

Every frame can function as a template. Within a frame, you can
add values to its overall string value, and access the current value
of its string value:

• A value enclosed in ’{ ... } (quote curly brace) is added to
the frame’s string value. The enclosed value is a sequence of
expressions, not a frame.

• An empty ’{ } returns the current frame’s string value.

So, for example, the following two expressions are equivalent in
their effect:

"a\{def x : "c"}b\{x}d"
{’{"a"}; def x : "c"; ’{"b"}; ’{x}; ’{"d"}; ’{}}

3.2.4 Self

self returns the current frame.

self is a transient value and needs care in its use. Defining and using
functions, operators and catch can affect its value.

A good general way to avoid these difficulties, where the value of
self is needed, is to bind the value of self to a named property of
a frame at the start of a frame prior to any functionality that might
cause difficulty, as in:

12

{
def this : self;
def f () :
g (this) # "this" is the outer frame

}

3.2.5 AtEnd

At the end of a frame, whether it explicitly specifies a result value
or not, one can place the keyword atEnd, followed by one or more
expressions. These expressions are performed after the frame is
discarded. It can be used to ensure some set of actions will be
performed no matter how the frame comes to completion:

{
do something that may exit with an exception
atEnd
print "do something that’s needed no matter "

"how you exit";
};

The expressions following the atEnd are performed no matter what.

3.2.6 Calling Frames

You can use a frame as if it were a function if it has a method named
“0callable”, as in:

def nextNumber :
{
def n = 0;
def 0callable ():

{
n += 1;
n

}
}

When you go something like:

print nextNumber ();

the next value of “n” will be generated and returned from
“nextNumber”. Callability is closely akin to “closure” – the above
frame/function could have been written:

def nextNumber :
{
def n = 0;
():

{
n += 1;
n

}
}

with the same effect, excepting only that, outside of the “nextNum-
ber” frame, you couldn’t go:

print *nextNumber.n;

i.e. you couldn’t access the frame’s properties. This is desirable a
lot of the time. Callability is for when it’s not.

The value of the “0callable” property of a frame can be another
frame, in which case it is in turn examined until a “0callable” prop-
erty with a function value is found (and invoked). It is an error to
attempt to “call” a frame without it having a “0callable” property,
or whose “0callable” property is neither a function nor a frame.

The “0callable” property is a Python thing. It’s Python (not quite)
equivalent is used to aid in defining overloaded properties of what
are otherwise function values. In the absence of a declared types
and overloaded operators, callability isn’t as useful in AFL, but,
like other features, it allows for experimentation.

3.2.7 Variables Revisited

(2.6) Variables describes basic variables in AFL, created using the
“=” form of name definition, as in:

def x = 3;

Variables don’t actually need to be tied to names – they are values
like anything else. The “ref” operator creates a variable value. The
following is equivalent to the above definition:

def x : ref 3;

What “ref” returns (i.e. what a variable value is) is a frame with
two properites:

• a function named “get”, which takes a list of zero arguments,
and returns the current value of the variable, and

• a function named “set”, which takes a list of one argument,
and sets the current value of the variable to the passed argu-
ment value.

So the following two value getters are equivalent:

*x
x.get ()

as are the following two setters:

x = 7;
x.set (7);

A final important observation about variables is that any record with
appropriately defined “get” and “set” properties can be used as a
variable, and can use the “*” and “=” operators. This is used in the
implementation of arraylist and hashtable.

3.3 Tuples

A tuple is a fixed-sized ordered sequence of values. AFL provides
a useful notation for specifying a tuple value:

def t : ’(1, 2, 3);

A tuple is immutable: it’s items can’t be changed once the tuple is
created.

The items of a tuple are accessed using numeric field names:

print t . 1;
print t . 2;
print t . 3;

13

A tuple, like any named set of values in AFL, is a frame. The above
definition of “t” is equivalent to:

def t : {def ’1 : 1, def ’2 : 2, def ’3 : 3; self};

The ’(that opens a tuple is a single symbol: no space is allowed
within it.

3.4 Functions

Functions need not be named. You can specify a function value
with an argument specification, colon and function body:

(x,y,z): x + y + z

The following two definitions are equivalent:

def f (x,y,z): x + y + z;
def f : (x,y,z): x + y + z;

The list form of defining and calling functions uses parentheses to
surround the argument names in a function definition and the ar-
gument values in a call. AFL also supports an alternative, more
primitive form of function definition and call that uses curly braces:

def abs {x}: if x < 0 then -x else x;
print abs {7}:

The difference between the two forms is that the curly brace form
passes a single argument value in place of a list of arguments – not
a list of one argument. What a parenthesized call does is pass its
list of argument values as a tuple, so the following two calls are the
same:

f (x,y,z)
f {’(x,y,z)}

On the definition side, the passed tuple is broken up into its named
components. These two definitions do the same thing:

def f (x,y,z): x + y + z;
def f {0args}:

{
def x : 0args . 1;
def y : 0args . 2;
def z : 0args . 3;
x + y + z

};

There are a number of further shorthand notations for use in defin-
ing functions:

• In defining or calling a function with curly braces, you can
omit the argument name or argument value. In the definition
this makes the argument anonymous, so you can’t get at it. In
the call it causes the default value of nil to be passed:

def f {}: print "f called";
def g : {}: print "g called";
f {};
g {};

• In the anonymous or def function form you can have multiple
argument lists. Each list defines a function. The following
three definitions are equivalent:

def f (x) (y,z): x + y + z;
def f : (x) (y,z): x + y + z;
def f : (x): (y,z): x + y + z;

In each of these cases, calling “f” with one argument returns
a function that takes two arguments. A call can be like the
following:

print f (1) (2, 3);

3.5 Operators

None of the operators in AFL are actually part of the core language.
They are defined using AFL’s operator definition syntax, and are
implemented in AFL, in AFL’s run time library, or using function-
ality provided by .NET’s libraries.

There are three kind of operator definitions: with arguments, with-
out arguments, and indexing.

There are no overloaded operators – that requires a static type sys-
tem (which is in the works).

3.5.1 Operators With Arguments

Operators are defined with an extended form of the def declaration:

def - [151 a] : 0 - a;
def [160 a] // [161 b] :

if a \ b < 0 then a / b - 1 else a / b;
def [190 n] ! : if n == 0 then 1 else n * (n - 1)!;

An operator definition consists of alternating operator part names
and argument specifications. Prefix, infix and postfix operators can
be defined, as can multi-part operators.

An argument specification is placed in square brackets, and consists
of a precedence number followed by an argument name. A higher
precedence number causes the operator to bind more tightly. For
example:

- 1 // 2 # Is evaluated as
- (1 // 2) # and not as
(- 1) // 2 # because // binds more tightly

(160/161) than does - (151).

The relative values of right and left arguments determines whether
an operator is left- or right-associative.

An operator defined within a frame can only be used within that
frame and within nested frames. You can’t use an operator name as
a field name. The following is invalid:

def r :
{
def a = 1;
def ++ [180 b]: a + b;

};
print r.++ 7; # invalid

Operators are about syntax. Their names are place-holders in the
syntax they define, not the names of things.

The functions that operator definitions are rewritten to by the AFL
compiler do have names, that can be used in the qualified form.
These are described later: see (3.5.6) Operator Names.

14

3.5.2 Delayed-Evaluation Operator Arguments

A third component can be used in operator argument specifications
– an empty pair of parentheses following the argument name, as in:

def if [90 a] then [90 b ()] else [90 c ()]:
a (b, c) ();

If () is specified in this way then an argument value is not evaluated
at the point of call but rather is wrapped as the body of a function
with a zero-length argument list. The function argument value is
passed to the invoked operator, wherein the value can be found by
calling the function (the last () in the “if” example).

3.5.3 Grouped Operator Arguments

In place of a precedence number in an operator argument specifi-
cation, there can be an empty group – any of (), {}, [], ’(), ’{} or
’[] – indicating that the argument must be wrapped with the given
delimiters, as in:

def if [() a] [90 b ()] else [90 c ()]:
a (b, c) ();

When a grouped argument is specified and it’s not the last argu-
ment, then the following argument must be specified immediately,
without an intervening name.

The sample “if” definition places the condition in a group, mean-
ing there’s no “then” keyword. This allows use of the C style of
composite statement syntax:

if (a < 0)
print "negative"

else
print "non-negative";

There can be more than one grouped argument in a row. We could
have defined “if” as:

def if [() a] [{} b ()] [{} c ()]: a (b, c) ();

in which case the “else” keyword would go and the then and else
parts would need to have {...} grouping, as in:

if (a < 0)
{print "negative}
{print "non-negative"};

In this latter example, the { ... } around the then and else parts are
there to wrap the arguments. They don’t make the arguments into
frames. A second set of curlys would be required to do that:

if (a < 0)
{{print "negative}}
{{print "non-negative"}};

which is why this is probably not a good syntax in this case.

The particular kind of grouping specified in an argument is used
when identifying an operator. For example, the following two defi-
nitions are distinct and valid:

def a [() x]: print "a (x) = " ++ x;
def a [{} x]: print "a {x} = " ++ x;

a ("hello");
a {"there"};

and the program’s output is:

a (x) = hello
a {x} = there

making it clear that “a (...)” and “a {...}” are different operators. (I
haven’t come up with a case where this distinction is useful yet, but
hey, experimentation.)

3.5.4 No-Argument Operators

There’s one other form of operator definition, for operators with no
arguments. (You can define operators with one, two etc. arguments,
so why not zero?)

def a = 0;
def 2xa []: 2 * *a;

The operator “2xa” is invoked as if it were a name, not an operator
or function. Each time it is used, its definition is invoked:

print 2xa;

The syntax for the no-argument operator definition is a bit incon-
sistent. The square brackets are used for consistency with other
operator definitions, but there’s nothing to put in them. All they
do is distinguish this form of definition from other forms. (No-
argument operators are useful for experimenting with a number of
ideas. The current definition syntax and naming logic isn’t entirely
satisfactory, and needs a fix.)

3.5.5 Indexing

There’s another useful kind of function/operator that can be defined
in AFL, indexing:

def pair (a, b):
{
def left : a;
def right : b;
def [a] :

if a > 0 then right [a - 1] else left;
};

def myList:
pair (100, pair (200, pair (300, nil)));

def getThird (a): a [2];
print getThird (myList);

The definition of [...] in the record created by “pair” returns the
“nth” item in a chained list built using pairs. It’s invoked using a
subscripting-like syntax.

The definition of the indexer uses square brackets as the indexer
“name”. This is not the operator argument syntax because what’s in
the square brackets doesn’t start with a precedence number. There
can be more than one indexer defined in a scope, so long as each
has a different number of arguments defined for it:

def [] : if right == nil then left else right [];
Last item right-branch-wise.

def [a, b]: if a > 0 then right [a - 1, b] else
if b > 0 then left [0, b - 1] else left;

15

2 dimensional indexing of tree.

Indexers work somewhat differently from other operators in that
they are usually accessed outside of the scope in which they are
defined. When used within the scope in which they are defined,
indexers can be used without a prefixing qualification:

[2] # get 2nd (or 3rd if zero-based) item
self [2] # equivalent

There’s a second form of indexer, using ’[and] as brackets – the
opener is a two-character symbol, consisting of single quote and
open square bracket. This second form is defined and used in just
the same manner as the first.

3.5.6 Operator Names

As noted in the description of operators with arguments, opera-
tor names are not names of things but are syntactic place-holders.
However, all operators and indexers do have names, which can be
used in the usual way:

• A function name is constructed for each operator with argu-
ments out of its syntactic place holder names. These names
are joined into a single name as follows:

– If there is more than one syntactic name, the partial
names are joined with a “$” between each pair.

– If there is an argument prior to the first name (i.e. an
infix or postfix operator) a “$” is placed at the start of
the name.

– If there is an argument following the last name (i.e. a
prefix or infix operator) a “$” is placed at the end of the
name.

The resulting name is that of a function that takes a list of the
operator’s arguments. For example:

print $+$ (3, 4); # prints 7, i.e. 3 + 4
print -$ (3); # prints _3, i.e. - 3
print if$then$else$ (a >= 0, a, -a);

Prints the absolute value of "a".

Where the operator has a () argument, the corresponding
function doesn’t. So the second and third argument of
“if$then$else$” need to be passed as functions and the result
of “if$then$else$” invoked if it’s not desired to evaluate the
failing alternative.

• An operator with no arguments has a function defined with
the same name as the operator. The function isn’t accessible
using an unqualified name. If it’s defined within a frame, the
frame (e.g. “self.”) can be used to qualify the name and get
the function.

• Indexers have a name consisting of the number of arguments
of the indexer (zero or more) followed by “item”, for the [...
] form, or by “additem”, for the ’[...] form. So a 1 item [
...] indexer has the name “1item”. This function name can
be used like any other function name, qualified or not. The
following two indexings/calls are equivalent:

a [b]
a.1item (b)

3.5.7 Mixing Operator and Function Definitions

Similarly to function definitions, zero or more arguments or argu-
ment list can be specified following an operator prototype:

def [150 a] +++ [151 b] (c): a + b + c;

The operator +++ returns a function that adds the argument passed
to it to those passed to the +++ operator.

Other combinations are supported:

def r :
{
def [] (): print "OK";
[] (); # The first "OK"
self

};
def y [180 a] (): print a;
def x [] (): print "Also OK";
r [] (); # The second "OK"
(y "OK Too") (); # "OK Too"
x (); # "Also OK"

(Yes, strange and not much else. But consistent. The language
design attempts to make things as uniform as possible.)

3.5.8 Separating Operator Syntax and Functionality

A name definition (def followed by a name) binds a value or func-
tionality to a name. In contrast, an operator definition binds func-
tionality to a piece of syntax: a prefix, infix or postfix operator, or
an indexer.

In a name definition, there’s the name and everything after that de-
scribes the value bound to the name. But when used to define an
operator, there is some overlap between the syntax and the func-
tionality: the function’s arguments are declared in between the op-
erator’s symbols, within it’s syntax, even though they are part of
the value. To clarify the syntax vs. functionality issues for oper-
ators, AFL has a second form of definition, with the keyword op
following def, as in:

def op [150] + [151]: (a, b): a - (0 - b);

The difference between def and def op is that def op defines the
syntax of the operator followed (after the colon) by what it’s bound
to – which must be a function value for it to be useful – whereas just
def actually defines a function. The “+” definition using just def is
as follows, with the “(a, b):” bit missing because the arguments are
declared as part of the operator’s arguments’ syntax:

def op [150 a] + [151 b]: a - (0 - b);

What’s allowed and not for def op are:

• The argument declarations for def op are the same as for def
except that either the argument names must all be specified as
asterisk (“*”) or omitted.

• For a non-indexing operator, there is no ambiguity in omitting
the asterisks, so doing so is allowed.

• For an indexing operator, asterisks must be used. This avoids
ambiguity between, for example, the zero and one argument
forms:

16

def op []: (): 0;
def op [*]: (a): a;

• The right-hand side of a def op cannot be defined using the
“=” or omitted variable definition form.

• A no-argument operator can be defined without the suffixing
“[]”, as in:

def op arraylist0 : (): arraylist (0);

The alternative def op form, in addition

• to helping explain what operators really are, and

• making a better syntax for zero-argument operators,

allows for one thing that can’t be done with the plain def syntax:

• You can bind an operator to an function or operator defined
elsewhere, as in:

def op [190] ! : factorial;

So for every form of operator definable using just def, there’s a
corresponding form using def op, although the opposite isn’t the
case. So in terms of rewrites, the def op form can be considered
more basic.

3.6 True and False

In AFL, the values true and false are functions, not scalar values.
They are defined as follows:

def true (a, b) : a;
def false (a, b) : b;

true is a function that expects two calls and returns the argument
value passed it by the first call. false returns the second call’s
argument value. true and false are “selectors”: they choose one
value or the other.

The most primitive form of conditional is the following, where “a”
has a value of true or false:

a (b, c)

Depending on whether “a” is true or false, “b” or “c” will be
returned.

It’s usually the case in a conditional that there’s evaluation required
for the chosen then or else part without evaluating the unchosen
alternative. So a better form of the conditional is the following:

a ((): b, (): c) ()

In other words, postpone evaluating “b” or “c” by making them
functions, and call the function returned by the conditional once
chosen. This is how the if-then-else operator is defined:

def if [90 a] then [90 b ()] else [90 c ()]:
a (b, c) ();

def if [90 a] then [90 b ()]: a (b, (): nil) ();

The logical operations are defined in a similar way:

def [120 a] || [121 b ()] : a ((): a, b) ();
def [121 a] && [122 b ()] : a (b, (): a) ();

def ! [122 a] : a (false, true);

For “||” and “&&” the first argument is always evaluated but the
second one may not be if the first argument is sufficient to determine
the result. This is consistent with how these operators are defined
in other languages.

3.7 Generators

A generator is a function that retains persistent state. It typically
generates a sequence of values, returning each value on successive
calls to the function.

3.7.1 Using Generators

The for operator takes a generator as its first argument. A generator
in AFL is any function or operator that returns a function that takes
a function that when called is passed one of the values generated.
Hmmm, maybe an example would work better:

def generator : 1 to 10;
def display (n): print n;
generator (display);

In this example, the name “generator” is bound to an the generator
returned by “1 to 10” and “display” is bound to a function that’s to
be called for each value returned by the generator. The call “gen-
erator (display)” invokes the generator, passing it the function to be
called for each generated value.

Because of AFL’s expression syntax, you can also formulate the
above example with no name definitions with the same effect:

(1 to 10) ((n): print n);

Generators support some of the basic looping control structures in
AFL. Here’s the definition of for:

def for [90 G] do [90 B]: G (B);

Which means that the above example can be expressed as:

for 1 to 10 do (n): print n;

The primary role of the operator definition is, like that for if-then-
else, to provide a more expressive and readable form of what is a
common construct – and it’s always good to get rid of parentheses.
(Sorry again, Lisp fans.)

3.7.2 Defining Generators

A generator is defined as function that takes a function as its argu-
ment:

def alphabet (yield):
for 0 to 25 do (i):
yield ("abcdefghijklmnopqrstuvwxyz" drop i

take 1);

The generator calls the passed function with each value it generates
in succession. In this example, “alphabet” is the generator and
it calls the “yield” function each time around. It can be used as
follows:

17

for alphabet do (c):
print c; # Prints letters one-per-line.

Usually a generator is defined with parameterization:

def allchars (aString) (yield):
for 0 to length aString - 1 do (i):
yield (aString drop i take 1);

for allchars ("abcdefghijklmnopqrstuvwxyz") do (c):
print c;

Note that “allchars” has two argument set specifications: the first
parameterizing the generator, and the second used for invoking and
running the generator. This two-argument-set form is common for
generator definitions.

Generators in AFL are “true” generators, in that they can yield their
values not only from the top-level generator function, but from any
nested function in which the “yield” function is passed or otherwise
made available. This is a major advantage when filtering complexly
structured input data.

It’s appropriate to define commonly used generators as operators.
This is a definition for the by-to, to and by operators:

def [120 a] by [121 s] to [120 z] (yield):
catch exit:
{

def loopup ’{n} : (
if n > z then exit ’{};
yield (n);
loopup ’{n + s}

);
def loopdown ’{n} : (

if n < z then exit ’{};
yield (n);
loopdown ’{n + s}

);
(if s >= 0 then loopup else loopdown) ’{a};

};
def [120 a] to [120 z]: a by 1 to z;
def [120 a] by [121 s] (yield):

{
def loop ’{n} : (

yield (n);
loop ’{n + s}

);
loop ’{a};

};

(4) Continuations are used to define by-to and by because they’re
primitive forms for use by other definitions – and one has to start
somewhere. Most user definitions of generators will use lower-level
generators in their definitions rather than continuations – as did the
“alphabet” and “allchars” examples above. (I’ve been trying to
postpone talking about continuations, but they just snuck in.)

3.7.3 Generator Operators

There are a number of operations defined on generators:

generator1 :++: generator2

where generator1 and generator2 are themselves generators.
Generates all that generator1 generates and then all that

generator2 generates. The number of values generated by
:++: is the number of values generated by generator1 plus
the number of values generated by generator2. :++: is the
“sum” generator.

generator1 inner generator2

where generator1 and generator2 are themselves generators.
Successively generates two-item tuples (pairs) of the values
generated by generator1 and generator2 in parallel, terminat-
ing when either generator1 or generator2 ceases. The number
of values generated by inner is the lesser of the number of
items generated by generator1 and the number of items gen-
erated by generator2. inner is the “inner product” generator.

generator1 outer generator2

where generator1 and generator2 are themselves generators.
Successively generates two-item tuples (pairs), by pairing
each value generated by generator1 with every value gen-
erated by generator2. The number of values generated by
outer is the number of items generated by generator1 times
the number of items generated by generator2. generated. Un-
like inner, which invokes each generator once, outer also
invokes the generator1 once, but invokes the generator2 once
per value of the first generator1. outer is the “outer product”
generator.

generator :-: count

where generator is a generator and count is a number. Gen-
erates what’s generated by generator, but skips over the first
count values generated by generator, generating only the val-
ues following the first count.

generator :+: count

where generator is a generator and count is a number. Gener-
ates the first count values generated by generator, not gener-
ating any values following the first count.

each value

where value is a frame with a “generator” property, that
is a function with a one-item argument list. Returns that
“generator” property. “each” supports things like “for each
myArraylist do (v): print v”.

value forever

value is yielded over and over again. “forever” is most use
in conjunction with explicit loop exits or with other generator
operators, as in “x forever :+: 10”.

function map generator

where function is a function and generator is a generator.
function must accept of the values generated by generator as
a valid argument. Successively generates the result of calling
function with each of the values of generator. The number of
values generated by “map” is the number of values generated
by generator.

initialValue next sequencer to tester

where sequencer and tester are functions with a one-item
argument list. “next ... to” generates values starting with
initialValue, passing them to tester for validation and pass-
ing each value to sequencer to produce the next value, as in
“0 next (i): i + 1 to (i): i < 10”. The values so creted, includ-

18

ing initialValue, are yielded until tester returns false, at which
point “next ... to” terminates. If initialValue fails tester, no
values are yielded.

initialValue next sequencer

where sequencer is a function with a one-item argument list.
“next” generates values starting with initialValue, passing
each value to sequencer to produce the next value, as in “0
next (i): i + 1”. The values so creted, including initialValue,
are yielded in tern. “next” doesn’t terminate.

value once

value is yielded exactly once. “once” is most use for adding
a value to an otherwise generated sequence, as in “each
myArraylist :++: nil once”.

ungenerate (generator, exit)

where generator is a generator and exit is a continuation (e.g.
catch identifier). ungenerate returns a function that on suc-
cessive calls, returns the values generated by the generator.
When there are no further values, exit is invoked.

generator whilst function

where generator is a generator and function is a function with
a one-argument argument list that returns a true or false re-
sult. “whilst” takes each value generated by generator, it
to function and generates that value if function returns true.
“whilst” terminates if function returns false.

As an example of using generators to define other generators, AFL
defines the :++: operator as follows:

def [135 a] :++: [136 b] (yield):
(
a (yield);
b (yield);

);

An example:

print "Non-multiples of 10:";
for 1 to 9 :++: 11 to 19 :++: 21 to 29 do (n):

print n;

3.7.4 True vs. Simple Generators

Languages like Python and C# support generators. Generators in
those languages are called “simple generators”.

A simple generator is a function, as in AFL, that can successively
“yield” values, and which terminates when it returns. AFL is differ-
ent in that yielding is not limited to the top-level generator function,
but can be done from anywhere – most importantly from within
functions called by the top-level generator function itself. AFL’s
generators are “true generators”. (AFL is not unique in having true
generators, it’s just that the languages used by most programmers
don’t have them.)

Simple generators work well for linearly structured input – where
there’s one thing after another. But something more is needed when
the input has a non-linear structure – a large variety of data formats
have nested structures, for example. It’s not that simple generators
are dead-in-the-water with respect to complex structure. Simple

generators can invoke nested generators and re-yield their results,
and this can deal with a lot of nested structures. It’s just that true
generators allow for a wider range of possibilities.

3.8 Coroutines

Coroutines are the single most important general programming lan-
guage functionality absent from major programming languages.

A coroutine is an independent but synchronous thread of execution.
What’s traditionally called a “thread” is in every way like a corou-
tine, excepting only that a traditional thread is asynchronous. In
practice, this small difference makes a big difference in how tradi-
tional threads and coroutines are best used, and in their performance
– switching between coroutines, appropriately implemented, can
take no more time than a simple function call, whereas switching
between threads often has a substantial overhead. Because of their
potentially low overhead, it is practical to use coroutines for a lot of
tasks, especially in the area of text processing.

(Statements about the performance of coroutines are intended to be
about coroutines in general, not about the performance of AFL’s
implementation of coroutines.)

Synchronicity between coroutines is maintained by the simple ex-
pedient of one coroutine calling/transferring control to the other.
It’s the same kind of synchronicity maintained between functions
and their callers.

3.8.1 Defining and Using Coroutines

In AFL you create a coroutine by calling the “makeroutine” func-
tion:

def coroutine :
makecoroutine (coroutineTopLevel, coroutineExit);

makecoroutine is passed two arguments:

• A function to be called to start the new coroutine running.

• A continuation (e.g. catch identifier) to be transferred to if
and when the new coroutine exits.

makecoroutine returns a function value.

You’re always in a coroutine. The “main” thread of a program is
a coroutine, but that isn’t an important issue unless there are other
coroutines around.

The new coroutine’s “top level” function is passed two arguments:

• A function that suspends the new coroutine and passes a value
to where it was resumed from.

• The first value passed when resuming the new coroutine.

The function returned by makecoroutine and the function passed
as the first argument of the new coroutine’s top-level function are
the creator’s and new coroutine’s “resume” functions. They each
work just the same:

• When invoked, it suspends the current coroutine and resumes
the other coroutine.

• The value passed to the function is returned from the other
coroutine’s resumer as its result, excepting only that the first

19

time that the new coroutine is resumed, the value is passed as
its top-level function’s second argument.

Both resume functions are AFL values, which means that they can
be passed around and used as you wish. They are functions, that can
be used like any other function. The main consequence of this is
that if there are more than two coroutines around, who’s resuming a
coroutine may not be the one that originally was returned or passed
that resume function. But that’s OK, a coroutine should just do its
job and leave it to the resumer to decide when it should be called.

3.8.2 A Coroutine Example

Here’s a simple example of a pair of coroutines passing values back
and forth:

def cr1 (suspend) :
{
print "Starting cr1";
for 1 to 5 do (n):

(
print "cr1 loop passes to cr2, value: \{n}";
print "cr1 is resumed with value: " ++

suspend (n);
);

print "cr1 exits";
};

def cr2 (suspend, firstArg) :
{
print "Starting cr2 with value: \{firstArg}";
for 5 by -1 do (n):

(
print "cr2 loop passes to cr1, value: \{n}";
print "cr2 is resumed with value: " ++

suspend (n);
);

cr2 never exits -- the for goes on forever
};

cr1 (makecoroutine (cr2, done));

The last line makes a new coroutine, makes “cr2” its top-level func-
tion, says that the program should terminate the program if it ever
exits, and invokes “cr1” with the new coroutine’s resumption func-
tion.

An important feature of this example is that it illustrates the sym-
metry of coroutines. What goes on in the loops in cr1 and cr2 is
the same.

Here’s the output:

Starting cr1
cr1 loop passes to cr2, value: 1
Starting cr2 with value: 1
cr2 loop passes to cr1, value: 5
cr1 is resumed with value: 5
cr1 loop passes to cr2, value: 2
cr2 is resumed with value: 2
cr2 loop passes to cr1, value: 4
cr1 is resumed with value: 4
cr1 loop passes to cr2, value: 3
cr2 is resumed with value: 3
cr2 loop passes to cr1, value: 3

cr1 is resumed with value: 3
cr1 loop passes to cr2, value: 4
cr2 is resumed with value: 4
cr2 loop passes to cr1, value: 2
cr1 is resumed with value: 2
cr1 loop passes to cr2, value: 5
cr2 is resumed with value: 5
cr2 loop passes to cr1, value: 1
cr1 is resumed with value: 1
cr1 exits

3.8.3 currentTextWriter, currentTextReader and cur-
rentSource

(5.2.4) currentTextWriter, currentTextReader and (5.3.1) cur-
rentSource are the only mutable global values maintained by “in-
clude” files supplied with AFL. These values are global: not fields
of records, and accessible anywhere. This can cause difficulty when
using these values in more than one coroutine.

To make it practical to use these values (implicitly or explicitly),
AFL (AFL2 in particular, not the core language) implements these
names so that:

• each coroutine has its own copy of each of these values,

• these names always refer to the current coroutine’s copy of
the named property, and

• each of these names is a reference – that can be safely assigned
to in each coroutine.

By default, when a new coroutine is created, these three values are
copied from the creating coroutine. After that, they are maintained
separately. The (5.2.7) streamFrom and streamInto operators are
essentially distinguished from the generic makecoroutine by how
they establish these three values.

currentTextWriter, currentTextReader and currentSource are also implemented to be "thread safe" - see (5.5.5)
currentTextReader, currentTextWriter and
currentSource in Threads.

3.8.4 Benefiting From Coroutines

Coroutines can be tricky to use, and coroutines aren’t for everyone.
But once a coroutine-base interface has been implemented, the re-
sulting interface can be very easy to use, both for the implementers
of packages using the interface, and, more importantly, for users of
packages with coroutine-based interfaces. That’s because you use
coroutines to hide the complexities of implementation within the
coroutine-based interface, freeing both the user and package imple-
menter from a lot of interface issues.

A coroutine-based interface works because it doesn’t look like a
coroutine-based interface. It looks like something else, that the user
or package implementer is already familiar with:

• a function or method call,

• using a generator in a “for” loop, or

• piping data processing through a “filter”: which is just an
expression or function that reads from its default input and
writes to its default output.

20

3.9 Accessing .NET Functionality

Non-AFL objects and their features can be directly accessed from
AFL using a variant of function call syntax.

The mechanism described here is something of a place-holder. It
requires too much knowledge of the details of .NET arcana for
common use, and needs to be replaced with something more user-
friendly. However, this mechanism has been a great deal of help in
learning about how .NET works, and in providing access to .NET
functionality.

3.9.1 Calling .NET Functions

If the function is specified as a literal string value (not a name whose
value is a string), then it is interpreted as the specification of a .NET
feature. For example, the following call invokes the static method
“System.String.Concat”, passes it two string values and expects a
string value to be returned:

"string System.String::Concat(string,string)"
(a, b)

AFL examines the string specification and makes sure that the ar-
guments and result are treated properly.

The general syntax of the external function specification consists
of:

OPTIONS RETURN CLASS::METHOD-NAME (ARGUMENT-SPECS)

(Use of “::” instead of “.” to separate class and method names is a
.NET thing.)

There are two prefixes that can be placed at the start of an external
function specification:

• “new” specifies that a new object be created and that its creator
be invoked. For example, the following creates a new instance
of “System.Collections.ArrayList”:

"new void System.Collections.ArrayList()" ()

When creating new object, there are two things to be noted:
the result type is always “void” because the actual call is to
the new object’s initializer, and the initializer’s method name
is “.ctor”, which can be omitted (AFL adds it if it’s missing).

• “virt” specifies that the method is “virtual” rather than “sta-
tic”. In this case, an extra first argument is expected in in-
voking the method: the class of which it’s a member. For
example, the following call to the “System.String” class’s
“Length” property expects a string value to be passes as its
single argument, even though the specification denotes no ar-
guments:

"virt int32 System.String::get_Length()" (a)

As in this last example, a C# “property” needs to be specified with
the appropriate prefix on the name: “get_” or “set_”.

3.9.2 Qualifying .NET Names

In general, .NET classes have to be fully namespace qualified and
annotated with their containing module. The “System” namespace
resides in “mscorlib”:

"virt int32 [mscorlib]System.String::get_Length()"
(a)

All modules need to be specified. For example, the following spec-
ification describes the “Plus” (i.e. “+”) operator implementation in
AFL’s run-time library:

def [150 a] + [151 b] :
"int64 [.module aflruntime.netmodule]"

"AflRuntime.Afl::Plus(int64,int64)" (a, b);

Full qualification of this sort is required for argument types defined
in namespaces as well.

Where a .NET name is a value type with a qualified name, the type
name and annotation needs to be prefixed by “valuetype”:

"virt object valuetype DictionaryEntry::get_Key()"
(v)

3.9.3 Accessing .NET Fields

If there’s no argument list specified then the access is to a field, not
a method:

"class [mscorlib]System.Collections.ArrayList "
"[.module aflruntime.netmodule]"
"AflRuntime.Afl::AflArgs" ()

This access to “AflArgs” is to a static field. The argument list is
required in AFL even though it’s a field access (in order that AFL
recognizes the use of the string as a .NET name). If “virt” is spec-
ified for a field access, it indicates that the access is to an instance
field, in which case the record has to be given in the argument list.

3.9.4 Casting

All argument values of .NET functions are casted or unboxed by
AFL as required. Likewise, all result values are casted or boxed
to make them AFL-friendly. However, there are occasional cases
where further casting is required. AFL support a “cast” form of
prototype:

cast TOTYPE FROMTYPE

The prototype must be invoked with a single argument, which is
casted first to FROMTYPE and then to TOTYPE. For example:

"cast enum Xml.XmlNodeType int32" (1)

3.9.5 Passing and Returning Enums

.NET enumerated values (enums) can be created and read from
within AFL. There are a number of facilities for manipulating such
values:

• The repr operator gives name of the enum value as string.

• The toNumber operator gives the numeric value of the enum
value.

• The “cast” form of external specification can be used to con-
vert a number to its equivalent enum value:

"cast enum Xml.XmlNodeType int32" (1)

21

• A string can be converted to the enum value it names using
.NET’s reflection facilities:

def XmlNodeType (n) :
"object System.Enum::Parse"

"(class System.Type,string)"
("virt class System.Type object::GetType()"
("cast enum Xml.XmlNodeType int32" (0)), n);

In this example, the “cast” operation is used to create a value
of the appropriate enum type, the “GetType” to get its type,
and the Parse to convert the string (n) to the enum value.
Any other enum type value can be similarly created simply
by replacing the name “Xml.XmlNodeType” with another’s
enum’s type name.

Enums are value types in .NET’s type system. However, to make
sure AFL does the right thing with such values, the word “enum”
must be used in place of “valuetype” in an enum’s type specifica-
tion, as in the above example.

3.9.6 .NET Properties

There are a few special kinds of functions defined in the .NET sys-
tem, called “properties”. These are names defined with “get” and
“set” sub-definitions, which are called when the name is used in a
source or target context. Properties are indicated by prefixing the
.NET names with “get_” or “set_”, as in:

"virt int32 System.String::get_Length()"

There’s another kind of property that prefixes a name with “op_”:
operators. The operator’s name (as opposed to its symbol) is pre-
fixed with “op_”, as in the definition of the time difference operator
definition:

def [150 a] -- [151 b]:
"valuetype System.TimeSpan System.DateTime::"
"op_Subtraction(valuetype System.DateTime,"

"valuetype System.DateTime)" (a, b);

AFL is very limited in its support for “op_” properties at the mo-
ment. In fact, “op_Subtraction” is the only one it recognizes.

3.9.7 External Function Argument Lists

A .NET function’s arguments are passed as a tuple when using the
parenthesized argument list form. There is also a curly-brace form,
which expects a tuple to be passed to it. The following two are
equivalent:

"string System.String::Concat(string,string)"
(a, b)

"string System.String::Concat(string,string)"
{’(a, b)}

This form is useful when it is desired to pass along an argument list
as-is:

def concat {args}:
"string System.String::Concat(string,string)"

{args};

3.9.8 Null, True and False

.NET’s “null” value and AFL’s nil are not the same thing. Ditto
their true and false values. AFL provides access to .NET’s null,
true and false, primarily so that they can be passed to external .NET
functions, and so that if they are returned by a .NET function they
can be tested:

NetNull the .NET null value.

NetTrue the .NET true value.

NetFalse the .NET false value.

When an external function returns a “bool” value, it’s best to use
the AFL-provided operator “unbool” on the result of the function.
unbool converts a .NET bool value into its corresponding AFL
value, as in:

def [131 a] == [131 b] :
unbool "bool System.Object::"

"Equals(object,object)" (a, b);

3.9.9 .NET Name Shorthand

There are two useful abbreviations for this rather lengthy notation.
“[mscorlib]” is always optional for the “System” namespace. As
well, AFL provides an “externalModule” declaration:

externalModule
"[.module aflruntime.netmodule]AflRuntime.Afl";

This example indicates that any class name starting with “Afl”
is in the “AflRuntime” namespace of the “[.module aflrun-
time.netmodule]” module.

The interpretation of the string argument of externalModule takes
the last period-separated part of the given name – in this case “Afl”
– and uses the whole string as a replacement for that substring when
it appears as the first part of a class name.

externalModule can appear anywhere. It is not bound to any scope
of an AFL program. externalModule separates expressions, so it
does have an impact on a program’s syntax.

3.9.10 Declaring .NET Assembly Attributes

In addition to the other information provided by external function
specification strings and externalModule declarations, AFL allows
.NET assembly attributes to be specified. This is required when a
library’s identification is based on version information as well as
name. The syntax for doing this is a variation of the externalMod-
ule declaration, wherein the string consists of a .NET namespace
name followed by attributes in curly brackets, as in:

externalModule "System.Xml{.publickeytoken="
"(B77A5C561934E089) .ver 1:0:3300:0}"

(This is definitely over the edge when it comes to an inconvenient
language feature, but it helps until better syntax and functionality
comes available.)

4 Continuations

Continuations are the second core type in AFL (together with (3.2)
frames).

22

4.1 What The Heck Is A Continuation?

The easiest way of thinking about a continuation is that it is a func-
tion that doesn’t define a return – you’ve got to provide an explicit
exit and invoke the exit yourself. And that exit is itself is typically
via a continuation.

A continuation has the following properties:

• A code location to which control is passed when the continu-
ation is invoked.

• An assocated environment of name/value bindings. In AFL,
when you transfer control to a continuation, the environment
in which it was created is reestablished.

• A passed value. When you transfer control to a continuation,
you pass a value – an argument list if the continuation is a
function, a result if the continuation is a return, etc. “A value”,
because it is passed a composite value (a record) if multiple
values are to be passed.

• A passed exception handler. Which could be part of the
passed value. But because exception handling is in part “un-
der the covers”, the current exception handler needs to be
passed explicitly, allowing the AFL run-time to know where
it is. (An exception handler is itself a continuation.)

The thing that distinguishes a continuation from a “go to” is its
environment (or context).

4.2 Continuations in AFL

There are two different forms of continuation specification in AFL:

• the function-like form, and

• the catch/throw form.

The function-like form looks like a function in the way it is used,
excepting only that a coroutine’s argument list is surrounded by ’{
... } rather than { ... } or (...). The distinct notation “’{” is there to
tell the AFL compiler and the reader that the transfer of control does
not automatically establish a return point, the way that a function
call does, but rather defines and instantiates a one-way transfer of
control. Here’s a simple example of a function-like continuation:

def myloop ’{n} :
(

print n;
myloop ’{n + 1}

)

“myloop” is defined to be a continuation with an argument “n”. It
prints the value of “n” and then exits by invoking itself with a new
value for “n”.

The “continuation” in the ’{ ... } form is the body of code following
the “:”. In the example, “myloop” is bound to the continuation value
and processing continues until “myloop” is invoked. At that point
the code in the body of the continuation is performed.

Of course, the problem with this example is that it runs forever. To
deal with that, we need a way of exiting out of the loop altogether.
For that we can use the other form of continuation definition, catch,
as in:

catch exit :
{

def myloop ’{n} :
(
if n >= 10 then

exit ’{};
print n;
myloop ’{n + 1}

);
myloop ’{0}

}
print "OK";

In this second example, catch defines a second continuation, which
is bound to the name “exit”. A catch performs its body immedi-
ately. The continuation for a catch is the code immediately follow-
ing the body of the catch. In the example, this is the “print "OK"”.

A catch defines a name – for example, “exit” – which is bound
to the continuation which returns from the catch. The continuation
takes an argument value which becomes the value returned by the
catch.

There is only one kind of continuation in spite of there being two
forms of definition. A continuation is invoked using the “one-way”
call, with or without a value. In the above example:

• The initial and repeating invocations of “myloop” pass a value
to the continuation.

• The terminating invocation of “exit” doesn’t pass a value.
AFL fills in the value of nil, which is returned from the catch.
But the “’{}” is required, to indicate that an invocation is to
be performed.

Note that in some sense, the two forms of continuation specification
are “inside out” from each other: the continuation in the function-
like form is the body of the form, whereas that of the catch form is
what follows the body.

In some programming languages, such as Ruby[9], continuations
are “one-shot”: once you’ve called a continuation you can’t call it
again. Amongst other things, this allows copying the program state
to be done just once. Not so AFL of course: AFL goes with the
more general model – allowing a continuation to be invoked any
number of times.

4.3 Pluses and Minuses of Continuations

There are advantages to having continuations in a programming lan-
guage:

• They help explain a lot of basic concepts in programming lan-
guages.

• They help expressing some important computing algorithms.

• They are the foundation for the implementation of many
higher-level programming language functionalities.

There are also major disadvantages to having continuations in a pro-
gramming language:

• They are very low-level and their use can easily obscure a
program’s structure. It’s almost always the case that higher-
level forms do the job and are more expressive of intent.

23

Continuations are definitely to be “considered harmful” in the
same way as is the goto of early programming languages. But
in the same way that goto was useful in the ’70’s in explaining
the simple conditional and loop structures of that time, con-
tinuations are useful in explaining the “postmodern” (’though
themselves dating from the ’60’s) control structures of AFL.

• The exposure of continuations introduces some interesting
and unexpected behaviour. Continuations allow transfer of
control from anywhere to anywhere else in a program. It
means that function calls can return more than once per call,
for example.

• There’s a tendency to start with continuations when explain-
ing other new processing models. That’s quite right from a
technical point of view: build the foundation first, and the
house on top of that. But programmers want tools they can use
and most quite rightly have no interest in such an approach.

This document attempts to discuss higher-level things like
functions, coroutines and generators first, and then explain
later, in this chapter, the role of continuations. With this ap-
proach, I hope that more people can get a deeper understand-
ing of how programming languages work.

4.4 Implementing With Continuations

4.4.1 Loops

Loops typically involve two continuations: “do it again” and “end
looping”. This is the definition of the while ... do loop:

def while [90 a ()] do [90 b ()]:
catch exit:
{

def loop ’{} :
{

if a () then
{

b ();
loop ’{}

}
else

exit ’{}
};

loop ’{}
};

There are two continuations here, “loop” and “exit”, each doing
what their names imply:

• “loop” defines one iteration of the while loop. Its implemen-
tation contains the while test. If true it evaluates the while
body and reinvokes itself. If false it exits.

• “exit” defines where to return to when the loop terminates.

Neither “loop” nor “exit” actually pass a value. Hence the empty
argument specifications.

Both the test and loop body are implemented as functions, because
they both need to be invoked each time around the loop.

4.4.2 Functions

Functions are converted to an equivalent continuation form by the
AFL compiler. The following two definitions are equivalent:

def f {A} : E ;

def f ’{AA} :
{

def A : AA . 0args;
AA . 0return ’{ E }

}

As are the following two calls:

f {V}

catch return :
f ’{ { def 0args : V ; def 0return : return } }

That is, a function is a continuation – the continuation that transfers
control into the function’s body code – and function is passed a
frame of two fields:

• 0args is the argument or arguments passed to the function,
and

• 0return is the continuation that returns from the function.

A function call uses a catch to establish the returning continuation.

Where a function has an argument list, it is passed as a tuple, mak-
ing the following two calls equivalent:

f (x, y)

catch return :
f ’{ { def 0args : ’(x, y) ;

def 0return : return } }

and the following two definitions equivalent:

def f (a, b) : E

def f ’{ AA } :
{

def a : AA . 0args . 1;
def b : AA . 0args . 2;
AA . 0return ’{ E }

}

4.4.3 Coroutines

Coroutines aren’t a core functionality in AFL, but are defined using
its facilities:

def makecoroutine (topFn, exit):
{
def c1 :

{
def return;
def resume ’{resumeinfo} :
(
return = resumeinfo.0return;
(*c2.return) ’{resumeinfo.0args.1}

)
};

def c2 :
{

def return = ’{secondArg} :
exit ’{topFn (resume, secondArg)};

24

def resume ’{resumeinfo} :
(
return = resumeinfo.0return;
(*c1.return) ’{resumeinfo.0args.1}

)
};

c1.resume
};

(This isn’t the version of makecoroutine that appears in
“afldefs.afl”, but is functionally equivalent, apart from
the maintenance of per-coroutine currentTextWriter,
currentTextReader and currentSource.)

The most important features of this implementation are:

• Two “portals” are defined so as to refer to each other. The
“resume” method of each portal transfers control to the other
coroutine. The two portals are symmetric in all respects ex-
cept that one of the two starts the other one running. The
starter is referred to as the primary coroutine and the startee
the secondary coroutine.

• Each portal’s resume method is implemented as a continu-
ation that acts like a function from the point of view of its
invoker. From the other coroutine’s point of view the passed
argument value is returned as the result of invoking its resume
method.

What resume does is save away its return address, and then
returns using the return address of the other coroutine. Apart
from that, all it does is return the argument value passed it.

• The “return” of the secondary portal is set to invoke the
“topFn” passed to makecouroutine, and to invoke “exit” on
its return. The first time the secondary coroutine is resumed –
is returned to – it invokes topFn.

• makecoroutine returns the resume function of the primary
portal.

The reason continuations are used in the implementation of corou-
tines is that they give explicit access to the return continuations of
the coroutine’s “resume” methods.

4.5 Continuation Syntax in More Detail

There are two kinds of continuation definition, and syntactic varia-
tions in both cases:

• There are three forms of the function-like definition in terms
of how they specify or not an argument name:

’{name} :
’{} :
’{contArg} :

The contArg keyword can be used within a ’{}:’s body. It
provides access to the argument value passed to the continu-
ation and can be used either in the named form or unnamed
form. The “’{contArg}:” specification makes this clear but
isn’t required.

contArg needs great care in its use. Because of how the AFL
compiler rewrites higher-level functionality, defining and us-
ing functions, operators and catch can affect the value, not
only within their arguments and insides, but in following code.
To avoid this difficulty, avoid using 'contArg explicitly: use

the named form if the passed value is used, and use (’{}) if
the value isn’t used.

• There are also three forms of catch in terms of how they spec-
ify or not an exiting continuation name:

catch name :
catch :
catch throw :

There’s no (’{}:) used, because the name is not the argument
of a continuation, its a continuation itself.

The throw keyword can be used within a catch’s body. It
provides access to the to the continuation and can be used ei-
ther in the named form or unnamed form. The “catch throw:”
specification makes this clear but isn’t required. For exam-
ple, an alternative formulation of a function call in terms of
continuations is the following:

catch :
f ’{ { def 0args : V ; def 0return : throw } }

Like contArg, explicit use of throw should be avoided == it’s
used in AFL1-to-AFL0 rewrites.

Like functions, function-like continuations can be defined and
bound to a name with a variant form of the def declaration. These
two examples are equivalent:

def loop ’{} : (b (); loop ’{});
def loop : ’{} : (b (); loop ’{});

The main purpose of the contArg and throw keywords is to move
all naming issues into frames. The AFL compiler rewrites the
named forms of ’{} definition and catch into frames and the non-
name forms. It converts:

’{ A } : E

into

’{ } : {def A : contArg; E }

and

catch exit : E

into

catch : { def exit : throw; E }

4.6 Exceptions and Continuations

(2.12) Exception Handling describes the try ... except, try ... fi-
nally, signal, resignal, returnFrom and return facilities for han-
dling implicit non-local exits. These facilities are implemented us-
ing lower-level functionality.

The current exception handling functionality doesn’t distinguish
between different kinds of exceptions – an exception handler gets
all exceptions – although you can ask the type of an exception and
handle it or pass it on accordingly.

4.6.1 The Current Exception Handler

AFL maintains a “current exception handler”, which is invoked
when a .NET exception happens. The current exception handler
is accessible using the keyword exceptionHandler:

25

except (e):
if typeOf e != "DivideByZeroException" then
exceptionHandler ’{e};

The value of exceptionHandler is a continuation, hence the ’{ ...
} invocation syntax. It can be assigned and passed like any other
value, not just invoked in the above manner. The value passed to it
is a .NET exception.

The value of exceptionHandler with an exception handler is al-
ways the the next outermost exception handler. In the above exam-
ple, using exceptionHandler invokes the next outer current ex-
ception handler – it does the job of resignal.

4.6.2 Establishing Exceptions

Each continuation has an associated exception handler that is bound
to it when the continuation is created. Whatever the current excep-
tion handler is when a continuation is created becomes that con-
tinuation’s associated exception handler. When a continuation is
invoked, its associated exception handler becomes the current ex-
ception handler.

There are basically two cases for establishing a current exception
handler:

• One generally wants called functions to be evaluated in the
context of the caller’s exception handler rather than the cur-
rent exception handler at the time the function was defined.

• One generally wants the exception handler of the calling con-
text to be restored when a function is returned from.

The return case is well handled by the default behaviour of contin-
uation invocation: reestablish the continuation’s associated excep-
tion handler. The call case requires something more. This case is
dealt with by an alternative form of continuation invocation, that
has two arguments:

myCont ’{argument, exceptionHandler}

The continuation is invoked with given argument as in the single-
argument continuation invocation case. In addition, the current ex-
ception handler is set to the value given as the second argument,
rather than that associated with the invoked continuation. In this
example the used exception handler is exceptionHandler, the cur-
rent exception handler at the time of the call, which is the case when
calling functions.

The rewrite that converts function calls to continuation invocations
uses this two-argument form of invocation. The following two calls
are equivalent:

F {A}

catch exit:
F ’{ {def 0args: A; def 0return: exit},

exceptionHandler }

There’s a corresponding explicit exception handler passing version
of function call:

F {Argument, exceptionHandler}

This is the non-argument-list form of function call. With two argu-
ments, the first is passed to the function, and the second becomes

its current exception handler. Where there is an argument list, it can
be passed in this form as a tuple:

F { ’(Argument1, Argument2, Argument3),
exceptionHandler }

4.6.3 Every Continuation Has An Exception Handler

In addition to there being an always accessible current exception
handler, each continuation has an associated exception handler
which can be accessed by using the keyword exceptionHandler
as if it were a field name:

exit . exceptionHandler

The primary use of qualified exceptionHandler is to explicate the
rewrite of:

exit ’{}

as:

exit ’{ {}, exit . exceptionHandler }

4.6.4 Resignal and Signal

resignal is implemented by a simple invocation of the current ex-
ceptionHandler:

def resignal [180 e]: exceptionHandler ’{e};

signal is similar, with the addition of a call to the .NET method for
creating new Exception object instances:

def signal [90 a]:
exceptionHandler
’{"new void System.Exception(string)" (repr a)};

4.6.5 try/except and try/finally

The two forms of try are implemented using two-argument contin-
uation calls.

try ... except invokes its try part with its except part as its excep-
tionHandler:

def try [90 c ()] except [90 e]:
catch exit:
c ’{{def 0args: ’(), def 0return: exit},

’{o}: e ’{{def 0args: ’(o),
def 0return: exit}}};

Both the try and except parts have the same return location: exiting
from the try. Which is why the try part is invoked with the same
0return value as is used to invoke the except part.

try ... finally is implemented similarly:

def try [90 c ()] finally [90 e ()]:
{
def r: catch exit:

c ’{{def 0args: ’(), def 0return: exit},
’{o}: (e (); exceptionHandler ’{o})};

e ();
r

26

};

The major features of the finally form are:

• The result of the try part is saved (as “r”) and its value re-
turned in the “normal” logic path.

• The finally part is performed in both paths out of the form:
in the “normal” path immediately prior to returning the result
value, and in the exception handler used by the try part.

4.6.6 returnFrom and return

To support returnFrom and return, the AFL runtime supplies a
special .NET Exception derived type: AflReturn. This exception
type is issued by return, trapped by returnFrom, and is used to
pass the result value:

def returnFrom [90 c ()]:
try
c ()

except (e):
if typeOf e == "AflReturn"
then o.Value
else resignal e;

def return [90 v]:
exceptionHandler
’{"new void AflRuntime.AflReturn(object)" (v)};

returnFrom is most simply defined in terms of try/except and res-
ignal. In “afldefs.afl”, it’s defined in lower-level terms.

4.7 atEnd vs. finally

atEnd and try/finally appear to be similar, but the effect of their
use is quite different:

• One can’t be entirely sure when an atEnd is performed, but
one can be sure that it will be performed. An atEnd is not
performed at the end of the expressions in its frame – it is
preformed when the memory used by the frame is reclaimed
by the run-time system, which may be at a much later time.

• One can’t be sure that a finally will be performed, but one
can be sure when it will be performed in the flow of program
logic. A finally is performed when the code in its try part
exits with a value, or with an exception. However, in AFL,
this may never happen. As a rather artificial example:

catch exit:
{

try
exit ’{}

finally
print "This will never be printed."

}

4.8 Callability

In (3.2.6) Calling Frames, it is described how to make a frame
callable using the “0callable” property. In that section, the value
of the “0callable” property is described as a function or frame. In
practice, it’s a continuation or a frame: it can be a continuation.

4.9 Stackless Programming

AFL is a “stackless” programming language. That is, no stack is
used in the evaluation of expressions. (Actually you’ve got to use
.NET’s run-time stack to communicate with the .NET libraries and
use .NET run-time operations, but that’s the only use AFL makes
of the stack.) A stackless model makes it easy to implement the
functionality found in AFL. There are other implementation tech-
niques for much of that functionality, but totally getting rid of the
stack opens up all sort of possibilities.

Without a stack, all intermediate results (most importantly when in-
voking continuations) need to be placed somewhere else, typically
in frames. Function argument lists are combined into a single frame
which becomes the single argument passed to a continuation. And
the three values required to invoke a continuation – the continua-
tion value, the argument value, and the passed exception handler –
need to captured likewise. To do this requires a low-level form of
continuation call, which accepts the bundled values:

ccallWithEH ’(cont, arg, exc)

The ccallWithEH operator expects a frame as its argument, with
its “1”-named field the continuation value, its “2”-named field the
passed argument and its “3”-named field the passed exception han-
dler.

5 Other Functionality

Useful examples of functionality that can be accessed and imple-
mented using AFL in its current state are text input and output,
pattern matching and threading. (Mostly because text processing
applications are those that I find most interesting, and to make it
easier to compare coroutines and asynchronous threads.)

It’s informative to look at the include files “afldefs.afl”, “io.afl”,
“patterns.afl”, “sourceio.afl” and “threading.afl”. The following
descriptions should be sufficient for using these libraries, but for
what’s really going on, the include files are the authoritative source.

5.1 Odds and Ends

The following functionality is defined in “afldefs.afl” – which is
used by default – but hasn’t been explained elsewhere.

5.1.1 Time

now

“now” is a no-argument operator that returns the current date
and time. The returned value is a .NET value, but if you apply
the “repr” string operator to its value or print it, it will give a
formatted representation of the date and time.

expr1 - expr2

Both expr1 and expr2 must be .NET date/time values of the
sort returned by now. The - operator returns a .NET time
interval value. If you apply the “repr” string operator to its
value or print it, it will give a formatted representation of the
time difference.

5.1.2 Done

27

done '{ programResult }

“done” is a continuation that terminates the current thread or
the main program. For the main program, if the argument
passed to it is a string value that string value is printed, and
if the argument is a number its value is used as the program’s
exit code. In all other cases, if the argument is not a string
or number, or if the exit is from a thread other than the main
program, the argument value is ignored.

5.1.3 Reflection

typeOf expr

“typeOf” is an operator that returns a string description of the
type of its argument expr.

expr1 hasField expr2

“hasField” is an operator that returns true if expr1 is a frame
or other .NET object with a field named expr2. expr2 must be
a string-valued expression.

expr1 field expr2

“field” is an operator that returns the field of a frame or other
.NET object expr1, whose field name is expr2. expr2 must be
a string-valued expression.

5.1.4 Random Numbers

random (number)

random returns a uniformly distributed non-negative number
with a value less than number.

5.1.5 Building Continuation Call Argument Lists

ccall tuple

Assumes tuple is a tuple of length 2, with the first item a con-
tinuation and the second its argument. Calls the continuation
with the argument and the current exception handler.

The following continuation calls are all equivalent:

C ’{A}
C ’{A, exceptionHandler}
ccall ’(C, A)
ccallWithEH ’(C, A, exceptionHandler)

5.2 I/O

The include file “io.afl” defines a number of useful values and
functions for reading and writing text, and for reading and writing
octet/byte data.

5.2.1 Text Output

A “textWriter” is an AFL wrapper for a .NET Sys-
tem.IO.TextWriter value. Its methods are:

textWriter.writeline (text)

writes a line containing the text text.

textWriter.write (text)

writes the text text, no following line-end.

textWriter.flush ()

flushes out the text previously written.

textWriter.close ()

flushes and then closes the .NET System.IO.TextWriter.

Functions, operators and values using textWriter are:

stdout

is a textWriter that writes to “standard output”.

stderr

is a textWriter that writes to “standard error”.

outputFile (fileName)

is a function that creates a textWriter to the named file.

textWriter (NETTextWriter)

is a function that wraps a .NET System.IO.TextWriter.

5.2.2 String I/O

For convenience, string buffers can be written to:

stringWriter

is a no-argument operator that returns a text writer that writes
to a string buffer. You can retrieve what’s been written using
the readback method:

textWriter.readback ()

retrieves what’s been written to a text writer as a string value.

5.2.3 Text Input

A “textReader” is an AFL wrapper for a .NET Sys-
tem.IO.TextReader value. Its methods are:

textReader.readline (exit)

reads and returns a line of text.

textReader.readchar (exit)

reads a character, returning its value as an integer.

textReader.peekchar (exit)

reads a character, returning its value as an integer, but does
not consume it, so that the same character is read next time.

textReader.readtoend ()

reads in and returns all the remaining text in the file.

textReader.read (needed)

reads in at least needed characters in text mode, reading in
multiple lines if need be. A line feed is added to the end of
each read line by read.

28

textReader.generate

returns a generator of the input’s text lines. A textReader can
therefore be used as the first argument of “for each”. For ex-
ample:

for each stdin do (line): # Print out all non-
if line != "" then # empty lines from

print line; # standard input.

Each of “readline”, “readchar” and “peekchar” takes a contin-
uation as an argument and transfers to that continuation when end
of input is encountered.

Functions and values using textReader are:

stdin

is a textReader that reads from “standard input”.

inputFile (fileName)

returns a textReader that reads from file fileName.

textReader (TextReader)

is a function that wraps a .NET System.IO.TextReader.

5.2.4 The Current Text Reader and Writer

At all times, “io.afl” keeps track of a “current text reader” and a
“current text writer”. These values are initialized to “stdin” and
“stdout”, but they can be changed by assigning to them:

currentTextReader = inputFile ("myinputfile.txt");
currentTextWriter = outputFile ("myoutputfile.txt");

The “writeline”, “write”, “flush”, “close”, “readback”,
“readline”, “readchar”, “peekchar” and “readtoend” methods
can be used without qualification when used with the current text
reader or current text writer:

writeline ("Hello World");
catch exit:

{
def line : readline (exit);
some processing of line

}

5.2.5 Text Writing Operators

There’s an operator that can be used as a prefix or infix that makes
writing to the current text writer a bit easier:

<< text

is an operator that writes the text text to the current text writer,
and which returns the current text writer as its result.

textWriter << text

is an operator that writes the text text to the given textWriter,
and which returns the textWriter as its result.

The prefix and infix forms of << can be chained as in:

<< "Hello World" << lf

5.2.6 Text I/O Localization

Assigning to currentTextWriter and currentTextReader can
been clumsy, especially if there is a “main” output or input, as well
as more localized need for wanting to use the module’s facilities.
There’s a few control forms that help:

withTextWriter textWriter do expression

withTextWriter saves away the current value of
currentTextWriter, sets it to textWriter, evaluates
expression, restores the saved value of currentTextWriter,
and returns the value of the expression. withTextWriter
allows local unqualified use of the writing functionality
without disrupting a more global current text writer.

withTextReader textReader do expression

withTextReader saves away the current value of
currentTextReader, sets it to textReader, evaluates
expression, restores the saved value of currentTextReader,
and returns the value of the expression. withTextReader
allows local unqualified use of the reading functionality
without disrupting a more global current text reader.

readFrom expression

readFrom saves away the current value of
currentTextWriter, sets it to a stringWriter, evaluates
expression, restores the saved value of currentTextWriter,
and returns the text written to the stringWriter as a result.

readFrom differs from streamFrom in that it collects the
string value and when finished returns its value, whereas
streamFrom returns text as it is written within streamFrom.

5.2.7 Text I/O Between Coroutines

File readers and file writers are essentially coroutines – they are
synchronous but separate processing threads. Reading and writing
is also useful as a way of communicating within a program: data is
“piped” through subprocesses. The streamFrom and streamInto
operators support this form of programming.

streamFrom expression

streamFrom returns a textReader that supports all the meth-
ods of a (5.2.3) text input. The data to be read is whatever is
written to currentTextWriter within expression.

expression is performed in a separate coroutine, whose
initial currentTextReader and currentSource are set
to those of the invoker of the streamFrom. Its initial
currentTextWriter is created so that anything written to it
is returned when the streamFrom textReader is read from.

streamInto expression

streamInto returns a textWriter that supports all the meth-
ods of a (5.2.1) text output. The data written is read by the
currentTextReader within expression.

expression is performed in a separate coroutine, whose
initial currentTextWriter and currentSource are set
to those of the invoker of the streamInto. Its initial
currentTextReader is created so that anything written to
the streamInto textWriter is made available on following
reads from the currentTextReader.

29

5.2.8 Text Filters

A text filter is an expression (typically encapsulated in a function)
that reads from its default input and writes to its default output,
transforming the data in some manner. A filter can be used stand-
alone, as the main logic of a program. Or it can be used as a “pipe”
within an AFL program. There are two operators that support at-
taching text filters to readers and writers:

expression *> textWriter

The expression is evaluated with its currentTextWriter set
to the given `u(textWriter). The result of the *> operator itself
a text writer, such that anything written to it is available to be
read within the expression using the currentTextReader of
that expression.

textReader <* expression

The expression is evaluated with its currentTextReader
set to the given `u(textReader). The result of the <* op-
erator itself a text reader, such that anything written to the
currentTextWriter of the expression is available for read-
ing from it.

The results of *> and <* can be used in any writer or reader context.
Multiple uses of *> or multiple uses of <* can be used to pipe mul-
tiple filters together. A filter can be used in an input or an output
context: a filter need not be written specifically for input or output.
For example:

someReader <* filter1 <* filter2 # a reader
filter1 *> filter2 *> someWriter # a writer

5.2.9 Print

The “print” operator always writes to “stdout”. It is an operator,
with a low-precedence argument, so it can be used as if a “state-
ment”:

print "Hello World";

“printinline” prints to “stdout” like “print”, but it doesn’t put
a line-end at the end of what it prints.

print and printinline are defined in “afldefs.afl” rather than
“io.afl”, so they’re always available, even if “io.afl” isn’t in-
cluded in the program.

5.2.10 Octet Input

Not everything is text. To aid in using non-text data, “io.afl” pro-
vides low-level functionality for octet/byte data. For octet input:

octetInputFile (fileName)

Open a file for octet input. “octetInputFile” returns an
“octetInputStream” that can be read from.

octetInputStream.read (needed)

Read the specified number of octets from octetInputStream.
“.read” returns a string. If there are fewer than needed octets
left in the input, all the remaining octets, if any, are returned.

5.2.11 Octet Output

For octet output:

octetOutputFile (fileName)

Open a file for octet output. “octetOutputFile” returns an
“octetOutputStream” that can be written to.

octetOutputStream.write (data)

Write the specified number of octets to octetOutputStream.
(Only the bottom 8 bits of the Unicode number of each char-
acter in data are written.)

octetOutputStream.close ()

Close the octetOutputStream. A “.close” ensures that all the
data written gets to its destination. (octetOutputStream
closes itself, but at an unspecified time following its last use,
which may be too late if the output stream is reread during the
running of the program.)

5.3 Pattern Matching

The include file “patterns.afl” contains functions and operators that
perform Icon-like pattern matching.

There are three components to textual pattern matching:

• the scannable source of text to be matched,

• the patterns that describe what’s to be matched, and

• the mechanism for applying a pattern to a scannable text
source.

The mechanism is the easy part in AFL. Pattern matching op-
erations return a true/false result, indicating whether the pattern
matched or not. The scannable text source has properties that in-
dicate what it was that was matched.

This implementation is a non-backtracking pattern matching model,
which works well for a large range of tasks. “Non-backtracking”
means that when an alternative fails, its components are not revis-
ited for sub-alternative possibilities.

5.3.1 Scanning Sources

There are a number of ways of creating a scannable text source:

scanningSource (inputFunction)

“scaningSource” takes a function as its argument.
“inputFunction” is expected to be a function that takes a
numeric argument. When called, inputFunction should return
at least that many characters of text (it can return more than
requested), or return fewer characters when at the end of
input.

stringSource (string)

“stringSource” takes a string and makes it into a scannable
text source.

fileSource (textReader)

“textSource” takes a textReader (as defined in “io.afl”) and

30

makes it into a scannable text source.

currentSource

“currentSource” is the scannable text source used in the
most recent pattern match. currentSource is a variable, so
needs dereferencing when the source value is needed. How-
ever, most user uses of currentSource are assignment to,
and most value accesses are inside “patterns.afl”. For exam-
ple:

currentSource = fileSource (stdin);

scanReader

scanReader returns a scannable text source that reads from
the currentTextReader. It’s provided as a short-hand for
the somewhat clumsy:

scanningSource ((*currentTextReader).read)

scanReader is most useful when combined with source-
establishing operations, such as:

withSource scanReader do expression;
currentSource = scanReader;

scanReader needs “io.afl” as well as “patterns.afl” to be in-
cluded to be useful.

matched

“matched” is a no-argument function that returns the value of
the current scanning source.

5.3.2 Applying Patterns to Scanning Sources

Each of these operators apply the pattern to the scanning source. If
the scanning source is a string value, it is promoted to a scanning
source for pattern matching. The difference between the operators
is the result they return.

scanningSource ~: pattern

Return true or false.

scanningSource +: pattern

Return the text that’s matched.

scanningSource -: pattern

Return all the text following what’s matched.

The two-argument forms of ~:, +: and -:, each bind their first argu-
ment value to currentSource while the pattern is being matched,
and restore the previous value at the end of the match. In general,
if the user wishes to recover properties of the scanned source after
a match, the source should be captured in some other manner.

~:, +: and -: can also be used as prefix operators, with just a pat-
tern as their following argument. In these cases, currentSource
is the scanning text source matched against. It’s very often the case
that it’s appropriate to assign your input to currentSource and
then use it implicitly from there on in.

withSource scanningSource do expression

withSource saves away the current value of currentSource,
sets it to scanningSource, evaluates expression, restores the
saved value of currentSource, and returns the value of the

expression. withSource allows local uses of scanning, while
a more global use of a scanning source is going on.

scanningSource can be a scanning source value, a string or a
text reader value (as created in “io.afl”). withSource detects
which it is and convert is to a scanning source as appropriate.

5.3.3 Patterns

succeed

Always succeed matching, consuming no input text.

fail

Always fail to match.

= string

Match the given string of text.

pattern |: pattern

Match the first pattern. If it doesn’t match, match the second
pattern.

pattern &: pattern

Match both patterns in the order given.

pattern :?

Match zero or one instance of pattern.

pattern :*

Match zero or more instance of pattern.

pattern :+

Match one or more instance of pattern.

pattern rep count

Match pattern exactly count times. “rep” fails if count is neg-
ative.

pattern rep count orMore

Match pattern count times or more. “rep 0 orMore” is
equivalent to “:*”, and “rep 1 orMore” is equivalent to
“:+”.

pattern repupto maxcount

Match pattern (at least zero but) no more than maxcount
times.

pattern rep count upto maxcount

Match pattern at least count times but no more than maxcount
times.

anyOf string

Match any one character so long as it’s in the given string.

noneOf string

Match any one character so long as it’s not in the given string.

any

Match any one character.

31

?: pattern

Match the given pattern, but don’t consume any input.

!: pattern

Fail if the given pattern matches and succeed if it doesn’t.
Don’t consume any input either way.

arb pattern

Match up to but not including the given pattern. Fail if the
pattern is not found.

arbplus pattern

Match up to but not including the given pattern. Fail if the
pattern is not found, or if zero characters are matched prior to
the pattern.

move number

Consume number characters. Fail if there aren’t that many
characters, and leave any examined characters in the input for
later use.

pos number

Succeed if number is the current character position in the in-
put. For non-negative values of number, 0 is the start of the
input. For negative values of number, -1 is the end of the in-
put.

pattern :> string

Assign the text matched by the pattern to the scanning
source’s saved string property named by the string.

another string

Match the text most recently assigned to the scanning source’s
saved string property named by the string. Fail if the saved
string doesn’t match or if there is no such saved text.

character .. character

Match one character, so long as its “ord” value is greater than
or equal to that of the first character and less than or equal to
that of the second character. Fails if the next character in the
input is out of range or if there are no more input characters.

5.3.4 Accessing Scanning Source Properties

Once a pattern has been matched, a scanning source can provide
information about what was matched.

source []

returns all the text matched by the most recent pattern match
on source.

matched []

returns all the text matched by the most recent pattern match
on the current source.

source [string]

returns the text most recently assigned within a pattern (by
:>) when scanning source.

matched [string]

returns the text most recently assigned within a pattern (by
:>) when scanning the current source.

5.4 Scanning Text Readers

“sourceio.afl” defines a few operators that combine the functional-
ity of text readers from “io.afl” and the pattern matching function-
ality of “patterns.afl”. Both these latter files must be included if
“sourceio.afl” is. (AFL doesn’t yet support include dependencies.)

textReader <~ expression

supplies the textReader as the current scanning source of the
expression, and returns a text reader that reads what’s written
to the current text writer of expression.

scanFrom expression

returns a scanning source whose input whatever’s written to
the current text writer of the expression.

Both these operations are readily definable in terms of other func-
tionality, but provide useful expressive forms in programs whose
primary processing is pattern-matching-based.

5.5 Threads

The include file “threading.afl” contains functions that support
asynchronous threading and simple synchronization.

5.5.1 Creating and Using Threads

thread (function)

“thread” creates and returns a new thread. The new thread
starts by invoking the passed function with a zero-length ar-
gument list. The new thread runs until it exits from function.
A thread is created in a non-started state. It needs to be started
by calling its “.start” method.

currentthread

“currentthread” is a no-argument operator that returns the
thread in which its invoker is running. In the same way that all
code is running in a coroutine, all code is running in a thread.
No attempt should be made to “.start” currentthread.

The value returned by thread or currentthread is a record of five
function-valued fields (or methods):

thread.start ()

Start the thread. Only call this once.

thread.abort ()

Abort the thread.

thread.join ()

Suspend the invoking thread until thread terminates.

5.5.2 Monitors

monitor

32

“monitor” is a no-argument operator that creates and returns
a new synchronization monitor. A monitor has the property
that only one thread at a time can own it. The returned value
is a record of two function-valued fields (or methods):

monitor.enter ()

“.enter” acquires ownership of the monitor for the thread that
invokes “.enter”. If another thread attempts to acquire owner-
ship of the same monitor, it will block until the owning thread
does an “.exit”. If another thread already owns the monitor,
the invoking thread waits until the monitor becomes available.

A thread can call “.enter” more than once. The thread retains
ownership until it calls “.exit” as often as it has called “.enter”.

monitor.exit ()

“.exit” releases ownership of the monitor. If multiple “.enter”
calls have been made, ownership is retained until there has
been an “.exit” for each “.enter”.

critical monitor do expression

Evaluate and return the result of expression, wrapping the
evaluation in an “.enter” and “.exit” on monitor. critical
ensures that the “.exit” is performed no matter how expression
terminates, making it a lot safer than using “.enter” and “.exit”
oneself.

5.5.3 Sleep

sleep (milliseconds)

Puts the invoking thread to sleep for the indicated number of
milliseconds.

5.5.4 Multi-Thread Variables

Variables of the sort described in present a problem when used in
multi-threaded applications: use of a variable in more than one
thread can produce unpredictable results – two sequences of op-
erations can be interleaved in arbitrary ways. There are three ways
of dealing with this difficulty:

• Provide each thread with its own variables, preferably de-
clared in mutually disjoint scopes, so one thread can’t see the
variables of the “main” program or another thread. This is the
best approach for most purposes.

• Use (5.5.2) monitors to lock the access to one or more vari-
ables. This is the best approach where there really is just one
variable in question, shared by all threads.

• Use multi-thread variables to provide each thread with its own
value. Multi-thread variables allow a global name to refer to a
thread-specific value, allowing easier implementation of im-
plicitly used varibles such as currentTextReader, currentTex-
tWriter and currentSource.

A multi-thread variable, or thread-safe reference, acts like any other
variable – you can get and set its value – with one important differ-
ence: each thread has its own separate value for the variable. Even
if you pass the variable between threads, any use of the variable
remains specific to the thread in which the use is made. A multi-
thread variable is created using the threadSafeRef operator:

threadSafeRef (initialValue)

Creates a new multi-thread variable with an initial value of
initialValue. The initialValue is the initial value of the variable
in each thread in which it is used. Assigning to the variable in
one thread only changes the value in that thread.

A named thread-safe variable definition binds the result of thread-
SafeRef to the name as follows:

def x : threadSafeRef nil;

The corresponding non-thread-safe variable definition would be:

def x : ref nil; # or
def x = nil; # or
def x;

5.5.5 currentTextReader, currentTextWriter and cur-
rentSource in Threads

As noted earlier, currentTextReader, currentTextWriter and cur-
rentSource are thread safe. This is implemented by making these
values multi-threaded variables.

The initial values of each of these variables is nil in all threads
except for the main program (where they are set to other values if
“io.afl” or “patterns.afl” are included). So these values need to be
set if they are to be used, or if the I/O or pattern matching operations
that use them implicitly, in a thread.

5.6 XML Parsing

The include file “xmlparser.afl” provides an interface to .NET’s Val-
idating XML Parser. This interface doesn’t provide all the function-
ality of .NET’s XML Parser, but it provides a useful subset and is
an example of connecting to external functions and types.

A new XML Reader is created using the xmlreader function:

xmlreader (namepaces, xmlFragment)

xmlreader creates a new .NET XML Reader and passes it the
given namespace mappings and fragment of XML text.

The namepaces must be a hashtable, with the key/value
pairs each being a namespace prefix (the key) and its URN
mapping (the value). If there are no such mappings, you can
use “hashtable ()” as the first argument, which is recognized
with the same meaning. Mappings can be specified in the first
argument value using the ’[...] hashtable notation:

def reader : xmlreader (’["bk", "urn:sample"],
<book>
<title>Pride And Prejudice</title>
<bk:genre>novel</bk:genre>

</book>
);

The xmlFragment must be a string value.

xmlreader.read ()

“.read” attempts to read in the next XML node. It returns true
or false, indicating whether one has been read.

xmlreader.nodeType ()

“.nodeType” returns the type of a read-in node. You can

33

“repr” this value to get a string representation of the type,
such as “Element”.

xmlreader.depth ()

“.depth” returns the depth of the node in the structure of the
parsed XML fragment.

xmlreader.localName ()

“.localName” returns the local name of the node – e.g. an
element name.

xmlreader.prefix ()

“.prefix” returns the prefix of the node. For example, the
“xsd” in “xsd:path”. “.prefix” returns the zero-length string
if there is no prefix.

xmlreader.namespaceURI ()

“.namespaceURI” returns the namespace associated with
node’s prefix, if any.

xmlreader.value ()

“.value” returns the string value of a node with a text property.

xmlreader.attributes.generator (yield)

“.attributes.generator is a generator of the node’s attributes.
The generator yields for each attribute, its prefix, attribute
name and value, as in:

for each xmlreader.attributes do
(prefix, name, value):

if prefix == "" then
printinline " \{name}=\"\{value}\""

else
printinline

" \{prefix}:\{name}=\"\{value}\""

xmlreader.attributes [name]

Indexing “.attributes” with a valid attribute name returns the
attribute’s value.

An xmlreader can be used as a generator itself. For each gener-
ation, it reads in the next XML node and yields the name of the
node’s type, as in:

for each xmlreader do (nodeTypeName):
if nodeTypeName == "Element" then
process element etc.

6 Implementation Issues

6.1 The Single Frame Stack Tyranny

The single frame stack technique common in current programming
languages was developed in the 1960’s to deal with the slow ma-
chines and small memories of the time – we’re talking 8KB of
memory and either no hard disk or, if you were very lucky (and
rich), maybe a 256KB drive. In these circumstances, there is nei-
ther the processing power nor the available memory to do anything
other than squeeze everything in as tight as possible, in as short a
time as possible.

A single frame stack isn’t the only optimization available. With

faster processors and more memory – if say we could afford a ma-
chine with as powerful as a 10MHz processor with 2MB memory,
we could have multiple frame stacks, or eliminate them altogether.

The single frame stack is the major impediment in improving cur-
rent programming languages.

6.1.1 A World With No Frame Stacks

The big “secret” of AFL’s functionality is that AFL doesn’t have a
“frame stack” – when a function is called, the memory required for
its arguments and for the local state of the function are allocated on
the “heap”, a persistent pool of memory that requires garbage col-
lection to recover no-longer used memory. This is something of an
extreme approach, but it’s appropriate for prototyping a program-
ming language.

In practice, the AFL implementation uses .NET’s run-time stack for
invoking .NET functionality, and accessing values. In both cases,
values are put on the stack, the operation performed, and all values
immediately removed from the stack. Likewise, AFL continuations
use .NET local variables, but only for immediate use, and there’s
only a very small finite number of them (about 4 total) in existence
at any one time.

Having no frame stacks is not as radical (or even new) an approach
as it might at first seem. The frame stack is essentially an opti-
mization of a certain kind of memory allocation and deallocation.
It allows very fast creation and releasing (simply moving the stack
pointer), that works especially well for small pieces of memory –
like an argument list or a function’s local state. But if machine ar-
chitectures weren’t stuck in the ’70’s, they could provide support
for alternate allocation techniques.

6.1.2 Multiple Frame Stacks

AFL goes a bit too far in the direction of stacklessness.

The major missing feature in most programming languages is
coroutines and full-function generators. Completely general con-
tinuations require stacklessness. But completely general continua-
tions are not desirable in “real” programming languages. Support
for coroutines and fully general generators only needs a move away
from the single-stack mode to a multiple-stack model. Current
hardware architecture supports multiple stacks, but current oper-
ating systems (both Windows and Linux) make assumptions about
how the hardware stack pointer is used: Linux uses the stack pointer
to identify the current thread, and Windows seems to use it in low-
level heap memory management. Both operating systems make the
assumption that each asynchronous thread has only a single execu-
tion stack. And both make efficient implementation of coroutines
unnecessarily difficult.

Backing off from the ability to use continuations in any context, but
sticking with full-functioned coroutines and generators would not
reduce the power of the language significantly, while providing a
great deal of opportunity for code optimization, even given current
operating systems’ impediments in doing so.

6.2 Layers and Stages

AFL has been implemented in stages and is implemented in layers.

34

6.2.1 Layers

The AFL compiler presently consists of five phases:

• A lexical analyzer that reads the source files, recognizes to-
kens and implements “include” and “externalModule”.
The lexical analyzer also recognizes basic structural compo-
nents such as parenthesization and semicolon and comma sep-
aration.

• A parser that builds the syntax tree out of the lexical ana-
lyzer’s tokens. The parser implements operator definition and
rewrites uses of operators into function calls.

• A rewriter that transforms the parser’s syntax tree in a number
of ways. It transforms function definitions and calls into con-
tinuations and catches, and rewrites uses of names into more
basic forms of frame use.

The result of either the parser and rewriter phase can be output
with the /ah and /al options respectively. The output is in AFL
in both cases.

• A “flattener” that transforms the rewritten syntax tree into a
flattened sequence of continuations. The output of the flat-
tener can be produced using the /flat option.

Unlike the results of the earlier phases, the output of the flat-
tener is not in AFL – it’s a bit too low-level even for AFL.

• A code generator, that translates the continuations and frames
into target code. At present there are two code generators: one
that translates into C# and another that translates into .NET as-
sembler language. The result in either case has to be compiled
using the C# compiler (csc, msc or some other name) or CIL
assembler (ilasm or some other name) into a .NET assembly
that can then be run. The two approaches are equivalent in all
respects except that the C# approach doesn’t use a “native”
implementation of continuation transfers: it uses a “trampo-
line” function instead – returning to the trampoline at the end
of each continuation, and having it call the next continuation.
The CIL implementation uses tail calls, with the same effect,
but more efficiently. A compile-and-go and a compile directly
to a .NET assembly code generator are in the works.

6.2.2 Stages

The AFL compiler was developed in stages. Evidence of this is
in the rich output available from each phase of the compiler. The
compiler has undergone a lot of changes since its start (October
2004), one of the major ones being its integration with the .NET
run time libraries.

Importantly as a learning exercise, the C# code generator was cre-
ated first, and difficulties in developing the CIL assembler code
generator dealt with by examining the disassembly of the C#-based
compiled code. It was generally easier to express intent in C#. This
process is continuing in developing the direct-to-code code genera-
tor, using the CIL assembler as a guide.

6.3 Continuations

Continuations are implemented differently by the C# and for the
CIL code generators. Both code generators implement continu-
ations as .NET classes with a method (named “_0CCall”) to be
called in order to transfer control to the continuation. It’s how con-
trol is passed out of the _0CCall method that differs between the

two code generators:

• The CIL code generator implements a continuation transfer
as a tail-call from within the invoking continuation. _0CCall
methods don’t return, but always transfer control with a tail-
call. The .NET implementation correctly implements tail-
calls, so that the call stack is only ever one level deep.

• The C# language has no way of expressing a tail-call. So
instead:

– For a top-level transfer to a coroutine, the coroutine
(object) to be called is passed to a “trampoline” func-
tion (“Afl.CallContinuations”) which repeatedly calls
_0CCall methods.

– For a tail-call, the continuation to be called is saved
away and the calling continuation’s _0CCall method
simply returns to the Afl.CallContinuations that called
it.

Neither of these approaches is ideal implementation-wise, but they
both work. The CIL implementation is preferable performance-
wise.

Asynchronous threading requires that the top-level of a thread pass
control to an AFL continuation. This is achieved by having each
thread top-level pass the continuation to Afl.CallContinuations –
which has a useful property that if the called continuations tail-call
each other, it exits its looping the first time it is returned to.

6.4 The Inheritance Problem

The keeping of separate copies of currentTextReader,
currentTextWriter and currentSource for each coroutine
requires, in the language as it stands, that the coroutine implemen-
tation be aware of these values. In a language with a behavioural
inheritance system – like an object-oriented language – it would be
possible to separate this functionality, but not in the current AFL
language.

6.5 Temporary and Transient Values

The AFL compiler allows you to omit the rewriter phase (the /rw-
command-line option). Great care needs to be taken if you do so,
because the rewriter is responsible for allocating locations for in-
termediate values – you are programming directly in AFL0 rather
than AFL1/AFL2. The values affected are:

• self,
• throw,

• contArg, and

• the result of evaluating a frame.

The difficulties with (3.2.4) self, throw and (4.5) contArg are dis-
cussed with their descriptions earlier. Evaluating a frame has the
same difficulties. The solution, like the other cases is to bind the
value of a frame to a name of an enclosing frame prior to the eval-
uation of any nested frame.

If you want to experiment with /rw-, it’s appropriate to bind the val-
ues of contArg, throw and self to local names as soon as possible
within their scope, as in:

{

35

def this : self;
lots of other stuff that can use "this" safely

}

6.6 Operator Rewrites and Operator Names

The parser and rewriter phases introduce new names into a program,
either as part of transforming one form to another, or so as to protect
temporary and transient values:

• The names “0call”, “0args” and “0return” are used in
rewriting functions as continuations in the rewriter.

• The name “0noname” is used in dealing with compile-time
errors.

• The names 1, 2, 3 and the other positive integers are uses as
tuple field names.

• For each defined operator, a name is created for the func-
tion into which it is rewritten. For multi-name operators, the
names are joined together with a “$” between each pair. A “$”
is placed at the start of the name if it has a leading argument,
and a “$” at the end if it has a trailing argument. As exam-
ples, “$+$” is the function name of the “+” infix operator, and
“fordo” is the name of the for-do loop operator.

These names are chosen to be easy to avoid, but also easy to use
when needed.

A AFL Compiler and Run-Time Options

The AFL compiler is invoked as follows:

afl options inputfiles

For example:

afl /il mytest.afl

The AFL compiler options can be listed using:

afl /?

or

mono afl.exe -help

Experiment with options when you’re not sure.

A.1 Option Syntax

All options are specified with a leading / or one or two of - (slash,
dash or dash-dash). Where the option has a value the option name
and value are separated by an equals sign or a colon. The following
are all equivalent:

/k=t /k:t -k=t -k:t --k=t --k:t

Non-option entries on the compiler’s command line are interpreted
as AFL source file names. AFL source file names that start with a /
or - can be entered using a zero-length option name:

/=filename /:filename -=filename -:filename

A.2 Language-Modifying Options

Not all the options are described here. Only those that make a dif-
ference to how the language works:

/k=k Require stropping of word-form keywords.

With this option, for example, “atEnd” is not a keyword, but
is a name. To use the keyword, use “’atEnd”, with a prefixing
quote (“”’).

/k=m use CR+LF for line end.

/k=n copy line-ends as-is. Line breaks in strings are normally
interpreted as line-feeds (a.k.a. control-J). These two op-
tions change that behaviour. /k=m says interpret line breaks
as carriage-return plus line-feed, the MS-DOS/MS-Windows
convention. /k=n says copy line breaks as-is – as they appear
in the source program. /k=n can be useful or dangerous – it’s
behaviour can change from one machine to another.

/k=t Enable template mode. In template mode, the whole of this
AFL source program is treated as if it were a single string.
AFL is incorporate in the program using the \{ ... } notation.
/k=t illustrates that programming languages and “template”
languages differ only by whether the top-level of the program
starts within code or within a string.

/k=x Don’t recognize XML-style strings. When specified, things
like <a are recognized as a “<” operator followed by the letter
“a”. With judicious use of spaces around names, it shouldn’t
be necessary to ever use /k=x.

/s=a Add “returnFrom” to functions. Normally the “return” op-
erator requires an outer dynamicly wrapping “returnFrom”.
When /s=a is specified, every function defines a “return”. In
the absence of a nested returnFrom, a return returns a value
from the current function. Return from a “void” function us-
ing something like:

return nil

/s=o Use curried form for operator arguments. Normally an op-
erator is interpreted as invoking a function with an argument
list of however many arguments are defined for the operator.
When /s=o is specified, an operator is interpreted as invoking
a function with one argument in the non-argument-list form.
If there’s more than one argument, calling the function with
the first argument returns a function that accepts the second
argument, and so on until all arguments have been accepted,
and the last function’s result is returned. For example, with
the definition:

def [150 a] + [151 b]: ...;

The associated function is defined as:

def #$+$ (a, b): ...; # normally, without /s=o

or

def #$+$ {a} {b}: ...; # with /s=o

A use of “A + B” is interpreted as either:

$+$ (A, B) # normally, without /s=o

or

$+$ {A} {B} # with /s=o specified

/use=FILENAME Normally, the AFL2 language is defined by read-
ing the file “afldefs.afl”, and compiling the AFL source as if
it were in a frame following the definitions in that file. The
/use option causes “afldefs.afl” to not be read in, and AFL2

36

to be defined by the specified file instead. Because most of
the language is defined by the “/use” file, you can define your
own language this way.

/use- specifies that no AFL2-defining file is read in, and the
source program is interpreted as “raw” AFL1. This mode is
useful for testing out new forms, where you don’t want exist-
ing definitions to get in the way.

A.3 Run-Time Options

Run-time options are specified in the same manner as those for the
compiler. What’s currently available is:

/d Always display the value returned from the main program.

/e Display extra information in frame and continuation string
representations.

/tr Enable tracing (requires that the AFL program was compiled
with /tr as well).

/uN Set the number of “parent” levels displayed on exceptional
termination to N.

/v Always terminate verbosely, as if with an exception.

Any unnamed command-line arguments, and all those following a
stand-alone “-” on the command line are passed to the program as
an arraylist named “args”.

B AFL0 Syntax Specification

This is what’s left language-wise after including all the includes
and “afldefs.afl”, and doing all the rewrites, prior to the “flattener”
rewrite that leaves the thing no longer AFL:

program = frameContent

frameContent = (("def" name ":" expr)*
"def" name ":" expr ";")?

expr ("atEnd" expr)?

expr = "catch" ":" expr |
"’{" "}" ":" expr |
primary

primary = "{" frameContent "}" |
"(" (expr ";")* expr ")" |
"’{" ((expr ";")* expr)? "}" |
name | number |
string ("{" expr "}")? |
"self" | "throw" | "contArg" |
"exceptionHandler" |
primary "’{" expr "," expr "}" |
primary "." name |
primary "." "exceptionHandler"

C AFL1 Syntax Specification

This is everything minus the operators and functions defined in
“afldefs.afl”:

program = ("externalModule" string)* frameContent

frameContent =
(defPart ";")? exprPart atEndPart? ";"? |

defPart? atEndPart? ";"?

defPart = (exprPart ";")? def
(";" (exprPart ";")? def)*

atEndPart = "atEnd" exprPart?

exprPart = (expr ";")* expr

def = "def" opDefArg? name (opDefArg name)*
opDefArg? functionArgs? ":" expr

def = "def" name "[" "]" functionArgs? ":" expr

def = "def" ("[" | "’[")
(name ("," name)*)? "]"

functionArgs? ":" expr

def = "def" name "’{" (name | "contArg")? "}"
":" expr

def = "def" name ("=" expr)?

def = "def" "op" opKindArg? name
(opKindArg name)* opKindArg? ":" expr

def = "def" ("[" | "’[") ("*" ("," "*")*)? "]"
":" expr

functionArgs = ("{" name? "} |
"(" (name ("," name)*)? ")")+

opDefArg = "[" precedence name? "()"? "]"

opKindArg = "[" precedence "*"? "()"? "]"

precedence = number |
"(" ")" | "[" "]" | "{" "}" |
"’(" ")" | "’[" "]" | "’{" "}"

expr = "catch" (name | "throw")? ":" expr

expr = functionArgs ":" expr

expr = "’{" (name | "contArg")? "}" ":" expr

expr’ = name expr’ (name expr’)* name?

expr’ = expr’ (name expr’)+ name?

expr = primary

primary = primary "." name

primary = primary "{" (expr (";" expr)?)? "}"

primary = primary "(" (expr ("," expr)*)? ")"

primary = primary "’{" (expr (";" expr)?)? "}"

primary = "{" frameContent "}"

primary = "(" (expr ";")* expr ")"

primary = "’(" ((expr ";")* expr)? ")"

37

primary = "’{" ((expr ";")* expr)? "}"

primary = name

primary = number

primary = string

primary = "self"

primary = "throw"

primary = "contArg"

primary = "exceptionHandler"

primary = "nil"

Unlike the other quoted tokens in this syntax, “=” in the “def” pro-
duction is a name not a keyword. So it can be defined as an operator,
for example.

The expr’ productions are informal placeholders for the invocation
of user-defined operators.

D Operator Precedence

Operator precedence determines how arguments bind to operators
in the absence of parenthesization. Arguments bind more tightly or
more loosely to operators. For example a + b * c is parsed as if it
were entered a + (b * c) because arguments bind more tightly to *
than to +.

Operator precedence in AFL is represented by a non-negative in-
teger value. The larger the precedence number, the more tightly it
binds to its adjacent operator name. For infix operators, the rela-
tive values of the right and left argument precedences determined
whether an operator is “left-associative” or “right-associative”:
higher value on the left, left-associative, higher value on the right,
right-associative.

The following lists are provided as a summary of the standard oper-
ators provided with the current release of AFL in the preamble file
“afldefs.afl”.

D.1 Infix Operators

91 = 90
91 ||= 90
91 &&= 90
91 += 90
91 -= 90
91 *= 90
91 /= 90
91 \= 90
91 //= 90
91 \\= 90
91 ++= 90
91 **= 90
91 << 92
120 || 121
121 && 122
139 == 139

139 < 139
139 != 139
139 <= 139
139 > 139
139 >= 139
130 :+: 180
130 :-: 180
131 :++: 132
132 inner 133
132 outer 133
134 forever
134 once
134 whilst 135
136 by 137 to 136
136 by 137
136 to 136
136 map 137
136 next 137 to 136
136 next 137
140 ++ 141
141 ** 142
142 take 143
142 drop 143
150 + 151
150 - 151
150 -- 151
160 * 161
160 / 161
160 \ 161
160 // 161
160 \\ 161
181 field 182
181 hasField 182

D.2 Prefix Operators

critical 90 do 90
do 90 until 90
for 90 do 90
if 90 then 90 else 90
if 90 then 90
loop 90
print 90
printinline 90
resignal 90
return 90
returnFrom 90
signal 90
try 90 do 90
try 90 except 90
while 90 do 90
<< 92
! 122
each 136
+ 151
- 151
* 180
ccall 180
char 180
embeddedValue 180
length 180
ord 180
ref 180
repr 180

38

sqrt 180
toNumber 180
toLower 180
toUpper 180
typeOf 180

D.3 Operators With No Arguments

now

E References

[1] A. W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, New York, 1992.

[2] D. Berry. Introduction to Oregano. In Proc. of the ACM Sym-
posium on Data Structures in Programming Languages, SIG-
PLAN Notices, pages 171–190, February 1971.

[3] Canadian Government Printing Office, Hull, Quebec. The
HUGO Language Manual and Report, August 1980.

[4] R. E. Griswold and M. T. Griswold. The Icon Programming
Language. Peer-To-Peer Communications, New York, third
edition, 1997.

[5] D. Megginson. The SAX Project. http://www.
saxproject.org.

[6] Norwegian Computing Center, Oslo. Simula Users Guide,
revised edition, 1975.

[7] The Scheme Programming Language. http://schemers.
org.

[8] Omnimark Developers’ Resources. http://developers.
omnimark.com.

[9] D. Thomas. Programming Ruby. Pragmatic Bookshelf,
Raleigh, second edition, 2004.

[10] Document Object Model (DOM). http://www.w3.org/DOM.

[11] XML Pull Parsing. http://www.xmlpull.org.

39

