
AFL: Another Fun Language
AFL is a small simple programming language, designed to illustrate and to facilitate
experimentation with some of the basic principles of programming languages. The
language supports a wide range of control structures and rich operator definition
capabilities, based on a small core set of features, and provides access to the
mechanics of the language. Most interestingly, it supports “true” generators, pattern
matching, coroutines, in-language pipes, and continuations.

The long-term goal of the AFL project is to explore and illustrate what’s needed to
improve the support for text and markup processing in existing and new programming
languages. The current AFL language only partially covers what’s required. It’s
primary focus is on processing forms — on language structures rather than on data
structures. Even so, it’s already a rich language, capable of many things that you can’t
do in most programming languages. The next phase of development will focus on type
system and data organization issues.

The current AFL language is fully implemented and documented. It’s description and a
download can be found at:

www.wilmott.ca/afl

Using AFL: Coroutines
Using Symmetric Function Calls:

def cr1 (suspend) :
 {
 print "Start cr1";
 for 1 to 5 do (n):
 (
 print "cr1 passes to cr2: " ++ n;
 print "cr1 resumed: " ++ suspend (n);
);
 print "cr1 exits";
 };

def cr2 (suspend, firstArg) :
 {
 print "Start cr2 with: " ++ firstArg;
 for 5 by -1 do (n):
 (
 print "cr2 passes to cr1: " ++ n
 print "cr2 resumed: " ++ suspend (n);
); # cr2 never exits
 };

cr1 (makecoroutine (cr2, done));

The Program’s Output:

Start cr1
cr1 passes to cr2: 1
Start cr2 with: 1
cr2 passes to cr1: 5
cr1 resumed: 5
cr1 passes to cr2: 2
cr2 resumed: 2
cr2 passes to cr1: 4
cr1 resumed: 4
cr1 passes to cr2: 3
cr2 resumed: 3
cr2 passes to cr1: 3
cr1 resumed: 3
cr1 passes to cr2: 4
cr2 resumed: 4
cr2 passes to cr1: 2
cr1 resumed: 2
cr1 passes to cr2: 5
cr2 resumed: 5
cr2 passes to cr1: 1
cr1 resumed: 1
cr1 exits

Using AFL: More Coroutines
Piped Writing and Pattern Matching

def LETTER: "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "abcdefghijklmnopqrstuvwxyz";

def capitalize []:
 loop (exit):
 if ~: noneOf LETTER :+ then
 << matched []
 else if ~: anyOf LETTER then
 << toUpper matched []
 << +: anyOf LETTER :*
 else
 exit '{};

<< (stringReader ("hello world!") <~
 capitalize).readtoend ();

The Program’s Output:

Hello World!

“capitalize” is a “filter”, a function that
converts its input into its output. <~
feeds its first argument to its second.

True Generators Are Coroutines

AFL’s iterators and generators are based
on program state rather than data state,
as in Java, C# and Python:

def [136 a] by [137 s] to [136 z]
 (yield): {
 def n = a;
 while *n < z do {
 yield (*n);
 n += s;
 }};

The difference between AFL and the
other languages is that “yield” can be
passed around arbitrarily. For example,
you can “yield” an XML markup event
from deep inside an XML parser, making
“pull” parsers much easier to implement.
(The outer “def” above is an operator
definition for “by-to”.)

Hello World Revisited:

The venerable “Hello World!” program
can be written in AFL in a number of
ways:

1. A program consisting entirely of:

"Hello World!"

returns “Hello World!” (sans quotes) as
its result to the system invoking the
program, which then displays it.

2. You can go, more traditionally:

print "Hello World!";

3. You can set /k=t (make AFL a
template language!) on the AFL compiler’s
command line and have your program be:

Hello World!

More About Templating:

The template version of the “Hello
World!” program is the simplest template
program: just text. The next step is to
interpolate values:

\{def what: "World"}Hello \{what}!

The difference between “regular” and
template languages is whether the text
in a program needs quoting or whether
the code needs quoting: AFL has both.

A further refinement is XML templating:

print <book><title>\{title}</title>
 <author>\{author}</author></book>

The point being that what we need is not
different languages, but different ways
of expressing languages.

Programming v.s Templating Languages

