
What’s All This About Different
Kinds of XML Parsers?

How Do XML Parsers Differ?

A. By the relationship be-
tween the XML parser and
its client:

1. A DOM parser returns a
“tree” representation of the
XML document.

2. A Push parser calls client’s
methods with XML events.

3. A Pull parser returns XML
events to a client on request.

B. By how data is returned:

4. Data-copying XML parsers
copy all the information in the
parsed XML document into ob-
jects, returned to the client.

5. In-situ XML parsers, as
much as possible, indicate
where data was found in the
parsed XML document.

C. By what information is re-
turned to the client:

6. Element structure and prop-
erties, and data content in-
formation.

7. Internal entity location and
value information.

8. External entity information,
and the ability of the client to
participate in entity resolution.

……………………

There aren’t necessarily clean
boundaries between the dif-
ferent kinds of XML parsers:

9. Even the best in-situ pars-
ers have to provide some in-
formation using objects.

10. Most pull model parsers re-
vert to the push model when
accessing external entity data.

XML Parsers: Power vs. History
Relationship between parsers:

1. Given either a push or a pull
XML parser, you can easily
build a DOM parser. Push or
pull will give you XML events,
and you just create DOM tree
nodes to represent and link
those events.

2. Given a pull XML parser, you
can easily build a push parser:
get the events from the pull
parser and call the appropriate
methods in the push fashion.

In both cases, the other way
round doesn’t really work. You
can “fake” a pull or push parser
based on a DOM parser, but
you lose the low-footprint se-
rial parsing of both those mod-
els. You can’t really build a pull
parser using a push parser (in
the absence of coroutines, but
that’s another story.)

A bit of history:

In the realm of generally avail-
able parsers, SAX and SAX-
like push model parsers came
first. Using an object-
oriented programming lan-
guage, a SAX-like parser is the
easiest to build.

DOM and DOM-like parsers
came next. Given a SAX-like
parser, a DOM or DOM-like
parser is easy to build. With-
out a push parser, you have to
reproduce all the logic of a pull
parser within the DOM parser.

The next step is pull-model
parsers. Pull model parsers are
hard to build, because the cur-
rent state of parsing, held in
the tree in a DOM parser, held
in the program state in a SAX
parser, must be completely
saved away between calls from
the pulling client.

XML Parsers: Power vs. History
History vs. Power

It’s not surprising that more
powerful parsing models have
come later on — that’s the
conventional direction of “pro-
gress”. On the other hand, had
we had freely-available pull
parsers to start with, history
would have been different.

In-situ vs. data-copying

In-situ is more powerful than
data-copying: if the client
doesn’t care where the data is,
either will do; if the client
cares, only in-situ will do.

Historically: data-copying
first, and in-situ later.

Anything next?

Pull-everything, in-situ XML
parsers are about as far as you
can go — they can do anything.
So we’re getting close to the
end of this bit of history.

What’s missing?

The current pull-model parsers
only partially implement a pull-
everything interface, and most
are data-copying.

Why pull-everything? Extend-
ing the pull interface to entity-
side events and giving the cli-
ent full control over external
entity resolution using a pull
model puts fewer constraints
on the client and widens the
range of application of an XML
parser.

In-situ parsing is a good fit for
small-footprint devices (see
Antonio J. Sierra’s paper), but
has other applications. For ex-
ample, it allows you to use XML
as the internal “native” format
of data in an XML-aware text
editor. Again, the idea is put
the choices in the client’s
hands.

