
dntw3c.org Sam Wilmott
Extreme Markup 2006

Rethinking XSLT

dntw3c.org Sam Wilmott
Extreme Markup 2006

Rethinking XSLT

Notation Is Important

White Space Is Important

dntw3c.org Sam Wilmott
Extreme Markup 2006

Notation Is Important

• For common understanding:

• of the data being processed and transmitted, and

• of the processes being applied to the data.

• For productively efficient use:

• of that data, and

• of those processes.

dntw3c.org Sam Wilmott
Extreme Markup 2006

Notation Is Important
In the context of XSLT, there are four notations to
consider:

• The notation of the XML input data.

• The notation of the XML or other output data.

• The notation of the instruction logic of the XSLT
stylesheet.

• The notation of the template data (result elements)
within an XSLT stylesheet.

dntw3c.org Sam Wilmott
Extreme Markup 2006

Notation Is Important
• Depending on the way you look at things:

• XML is a notation.

• XML is a meta-notation.

• Either way, XML is about notation, and like any other
notation:

• XML is a good (meta-)notation for some (a
monstrous big lump of some) things.

• XML is not so good for some (a monstrous also, if
not so much so as XML, lump of some) things.

dntw3c.org Sam Wilmott
Extreme Markup 2006

Coding Progam
Logic in XML

dntw3c.org Sam Wilmott
Extreme Markup 2006

XML Encoding C
<cml:program version=”current c version”
 xmlns:cml=”uri for c language standard”
 xmlns:up=”uri for this user’s programs”>
 <cml:function name=”f” as=”cml:int”>
 <cml:param name=”n” as=”cml:int”/>
 <cml:if test=”$n=0”>
 <cml:then>
 <cml:return select=”0”/>
 </cml:then>
 <cml:else>
 <cml:return select=”$n+1”/>
 </cml:else>
 </cml:if>
</cml:function>
</cml:program>

dntw3c.org Sam Wilmott
Extreme Markup 2006

XML Encoding C

Here’s the same thing in the usual C notation:

int f (int n)
{
 if (n = 0)
 return 1;
 else
 return n + 1;
}

dntw3c.org Sam Wilmott
Extreme Markup 2006

XML Encoding C
Where the traditional C differs primarily from the
XML-encoded C version is in the following:

• There’s no self-identification or versioning of the
notation/language being used (no version= or xmlns).

• Every language component is not explicitly identified
as being part of the language (no xsl: or cml:).

• There are a minimum of notational artifacts in the
language: if’s argument is a test, it doesn’t need
saying.

dntw3c.org Sam Wilmott
Extreme Markup 2006

XML Encoding C

• Advantages of the C approach:

• Easier to read.

• Less typing.

• Minimally redundant.

• Advantages of the XSLT approach:

• Maximizes the information available to an XSLT
processor.

• Supports XML template data (result elements).

dntw3c.org Sam Wilmott
Extreme Markup 2006

And Now For
Something (Not)

Completely
Different

dntw3c.org Sam Wilmott
Extreme Markup 2006

Learning from C
Where could XSLT learn a lesson from C?

• NOT in copying C.

• In looking at an XSLT stylesheet as what it is: a
program.

• In removing all the XML artifacts from the non-
XML parts of an XSLT program.

• In approximating a notation that people naturally
use. (Which is what C did, 30+ years ago, with
different people.)

dntw3c.org Sam Wilmott
Extreme Markup 2006

Seen on White Boards

template “chapter/title”

 element = “H1”

xsl:attribute “ALIGN”>CENTER</>

xsl:if position()=1

 { attribute “indent” 0 }

dntw3c.org Sam Wilmott
Extreme Markup 2006

RXSLT

Removing the XML-encoding artifacts:

variable first-chapter-tag = “(Chapter) “

template chapter/title
 element H1
 attribute ALIGN
 “CENTER”
 if ../position () = 1
 value-of $first-chapter-tag
 apply-templates

dntw3c.org Sam Wilmott
Extreme Markup 2006

RXSLT

Result elements fit right in:

template para
 <P>
 {apply-templates}
 </P>

template chapter/title
 <H1 ALIGN=”CENTER>
 {apply-templates}
 </H1>

dntw3c.org Sam Wilmott
Extreme Markup 2006

RXSLT

XPath expressions become part of the language: no
quoting needed.

template example
 if not (parent-or-ancestor::annex or
 parent-or-ancestor::front-matter)
 <PRE>{value-of text-example}</PRE>

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important

White space is the dirty secret of markup languages.

• SGML did it one way.

• XML does it two ways (preserve/default), neither the
same as SGML’s way.

• Specific markup applications have their own
appropriate rules.

• All are good sometimes. All are bad sometimes. One
size does not fit all.

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important

White space is important in different contexts:

• For making a program/stylesheet readable.

• For making input data readable.

• In the presentation form of output data (for print/
web etc. applications).

Each context has its own requirements. Mixing the
requirements results in conflict, difficulty, and grief.

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important
Seen in some familiar XSLT stylesheets:

<xsl:template select="email">
 <bold>
 <xsl:text>[</xsl:text>
 <xsl:apply-templates/>
 <xsl:text>]</xsl:text>
 </bold>
</xsl:template>

<xsl:template select=”name”>
 <xsl:value-of select=”first”/>
 <xsl:text> </xsl:text>
 <xsl:value-of select=”last”/>
</xsl:template>

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important

A simple RXSLT equivalent:

template email
 <bold>
 {
 "["
 apply-templates
 "]"
 }
 </bold>

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important

And the other one:

template name
 value-of first
 " "
 value-of last

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important

Some better RXSLT equivalents:

template email
 <bold>[{
 apply-templates
 }]</bold>

template email
 <bold>[{apply-templates}]</bold>

template name
 value-of first; “ “; value-of last

dntw3c.org Sam Wilmott
Extreme Markup 2006

White Space Is Important

Moral:

In a template programming language:

You need syntactic separation of the program logic and
the template data.

dntw3c.org Sam Wilmott
Extreme Markup 2006

Back to RXSLT
• Implements XSLT 1.0. (Got to start somewhere.)

• There’s a fully working implementation written in
Python. (Just because it’s good for getting things up
and running fast.)

• It translates RXSLT into XSLT.

• Took about a week to implement the whole of XSLT
1.0, minus getting the white space in the output right.

• White space took a couple of weeks.

• Examples took a few more days.

dntw3c.org Sam Wilmott
Extreme Markup 2006

RXSLT

Another moral:

In spite of all the XSLT composition and editing tools
available, a lot of XSLT stylesheets are written by
people.

We need to think more of the people.

dntw3c.org Sam Wilmott
Extreme Markup 2006

RXSLT?

“Rethought XSLT”

“Revised XSLT”

“Real XSLT”

dntw3c.org Sam Wilmott
Extreme Markup 2006

dntw3c.org

Definitely Not The
w3c.org

dntw3c.org Sam Wilmott
Extreme Markup 2006

Where Is It?

www.wilmott.ca/rxslt Now

www.dntw3c.org Soon

