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Notation Is Important

• For common understanding:

• of the data being processed and transmitted, and

• of the processes being applied to the data.

• For productively efficient use:

• of that data, and

• of those processes.
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Notation Is Important
In the context of XSLT, there are four notations to 
consider:

• The notation of the XML input data.

• The notation of the XML or other output data.

• The notation of the instruction logic of the XSLT 
stylesheet.

• The notation of the template data (result elements) 
within an XSLT stylesheet.
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Notation Is Important
• Depending on the way you look at things:

• XML is a notation.

• XML is a meta-notation.

• Either way, XML is about notation, and like any other 
notation:

• XML is a good (meta-)notation for some (a 
monstrous big lump of some) things.

• XML is not so good for some (a monstrous also, if 
not so much so as XML, lump of some) things.
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Coding Progam 
Logic in XML
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XML Encoding C
<cml:program version=”current c version”
    xmlns:cml=”uri for c language standard”
    xmlns:up=”uri for this user’s programs”>
  <cml:function name=”f” as=”cml:int”>
    <cml:param name=”n” as=”cml:int”/>
    <cml:if test=”$n=0”>
      <cml:then>
        <cml:return select=”0”/>
      </cml:then>
      <cml:else>
        <cml:return select=”$n+1”/>
      </cml:else>
    </cml:if>
</cml:function>
</cml:program>
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XML Encoding C

Here’s the same thing in the usual C notation:

int f (int n)
{
  if (n = 0)
    return 1;
  else
    return n + 1;
}
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XML Encoding C
Where the traditional C differs primarily from the 
XML-encoded C version is in the following:

•  There’s no self-identification or versioning of the 
notation/language being used (no version= or xmlns).

• Every language component is not explicitly identified 
as being part of the language (no xsl: or cml:).

• There are a minimum of notational artifacts in the 
language: if’s argument is a test, it doesn’t need 
saying.
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XML Encoding C

• Advantages of the C approach:

• Easier to read.

• Less typing.

• Minimally redundant.

• Advantages of the XSLT approach:

• Maximizes the information available to an XSLT 
processor.

• Supports XML template data (result elements).
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And Now For 
Something (Not) 

Completely 
Different
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Learning from C
Where could XSLT learn a lesson from C?

• NOT in copying C.

• In looking at an XSLT stylesheet as what it is: a 
program.

• In removing all the XML artifacts from the non-
XML parts of an XSLT program.

• In approximating a notation that people naturally 
use.  (Which is what C did, 30+ years ago, with 
different people.)
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Seen on White Boards

template “chapter/title”

  element = “H1”

xsl:attribute “ALIGN”>CENTER</>

xsl:if position()=1

   {  attribute “indent”       0  }
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RXSLT

Removing the XML-encoding artifacts:

variable first-chapter-tag = “(Chapter) “

template chapter/title
  element H1
    attribute ALIGN
      “CENTER”
  if ../position () = 1
    value-of $first-chapter-tag
  apply-templates
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RXSLT

Result elements fit right in:

template para
  <P>
    {apply-templates}
  </P>

template chapter/title
  <H1 ALIGN=”CENTER>
    {apply-templates}
  </H1>
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RXSLT

XPath expressions become part of the language: no 
quoting needed.

template example
  if not (parent-or-ancestor::annex or
          parent-or-ancestor::front-matter)
    <PRE>{value-of text-example}</PRE>
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White Space Is Important

White space is the dirty secret of markup languages.

• SGML did it one way.

• XML does it two ways (preserve/default), neither the 
same as SGML’s way.

• Specific markup applications have their own 
appropriate rules.

• All are good sometimes.  All are bad sometimes.  One 
size does not fit all.
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White Space Is Important

White space is important in different contexts:

• For making a program/stylesheet readable.

• For making input data readable.

• In the presentation form of output data (for print/
web etc. applications).

Each context has its own requirements.  Mixing the 
requirements results in conflict, difficulty, and grief.
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White Space Is Important
Seen in some familiar XSLT stylesheets:

<xsl:template select="email">
  <bold>
    <xsl:text>[</xsl:text>
    <xsl:apply-templates/>
    <xsl:text>]</xsl:text>
  </bold>
</xsl:template>

<xsl:template select=”name”>
  <xsl:value-of select=”first”/>
  <xsl:text> </xsl:text>
  <xsl:value-of select=”last”/>
</xsl:template>
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White Space Is Important

A simple RXSLT equivalent:

template email
  <bold>
    {
      "["
      apply-templates
      "]"
    }
  </bold>
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White Space Is Important

And the other one:

template name
  value-of first
  " "
  value-of last
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White Space Is Important

Some better RXSLT equivalents:

template email
  <bold>[{
      apply-templates
  }]</bold>

template email
  <bold>[{apply-templates}]</bold>

template name
  value-of first; “ “; value-of last
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White Space Is Important

Moral:

In a template programming language:

You need syntactic separation of the program logic and 
the template data.
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Back to RXSLT
• Implements XSLT 1.0.  (Got to start somewhere.)

• There’s a fully working implementation written in 
Python. (Just because it’s good for getting things up 
and running fast.)

• It translates RXSLT into XSLT.

• Took about a week to implement the whole of XSLT 
1.0, minus getting the white space in the output right.

• White space took a couple of weeks.

• Examples took a few more days.
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RXSLT

Another moral:

In spite of all the XSLT composition and editing tools 
available, a lot of XSLT stylesheets are written by 
people.

We need to think more of the people.
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RXSLT?

“Rethought XSLT”

“Revised XSLT”

“Real XSLT”
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dntw3c.org

Definitely Not The 
w3c.org
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Where Is It?

www.wilmott.ca/rxslt  Now

www.dntw3c.org  Soon


